Abstract:
A switchgear enclosure has a case with a front face that surrounds an opening in the case. A flange extends from the front face and has a first surface adjacent to the opening and a second, opposing surface. At least the second surface is disposed transversely with respect to the front face. A door has a door bracket. A gasket is coupled the door bracket and forms an endless loop sized larger than a size of the opening in the case. The gasket has a seal portion. When the door is closed, the seal portion compresses against the second surface of the flange to provide a seal around the opening, and in the event of an arc in the case causing pressure to be exerted on the door, the gasket moves with the door, with the seal portion sliding along the second surface, maintaining the seal around the opening.
Abstract:
The present disclosure relates to a method for facilitating monitoring and control of an industrial process by means of a portable device comprising a projector arranged to project process graphics associated with process components of the industrial process. The method comprises a) obtaining, by means of the portable device, process component identification data of a process component; b) obtaining distance data for determining a distance between the portable device and the process component; and c) obtaining a process graphics image based on the process component identification data and the distance data for projection by the portable device, wherein the process graphics image is associated with a portion of the industrial process comprising the process component, and wherein information contained in the process graphics image is based on the distance between the portable device and the process component. The present disclosure further relates to a computer program and to a portable device.
Abstract:
A circuit breaking arrangement is adapted to be connected to a current path in at least one transmission line arranged to carry an electrical current for controllably effecting discontinuation of flow of electrical current in the at least one transmission line. The circuit breaking arrangement includes a plurality of series connections of a plurality of power semiconductor switching elements. The plurality of series connections of power semiconductor switching elements are connected in parallel relatively to each other.
Abstract:
Unique systems, methods, techniques and apparatuses of fault location in DC power distribution systems are disclosed. One exemplary embodiment is a DC power distribution system comprising at least one DC power distribution network and at least two protective devices operatively coupled to the DC power distribution network. Each protective device is structured to sense one or more electrical characteristics associated with the DC power distribution network and to controllably interrupt current through the DC power distribution line. A control system is structured to determine the location of a high impedance fault between two of the protective devices using one or more electrical characteristics sensed by the two protective devices to calculate the inductance and resistance of the portion of the DC power distribution line between one of the protective devices and the high impedance fault.
Abstract:
A method, field user presenting arrangement and a computer program product for enabling an operator of a process control system to determine the location of field users in the process control system are provided. The arrangement includes a presentation control unit that obtains position data of the position of a field user, obtain the positions of objects in the process control system, compares the position of the field user with the positions of the objects, determines that the field user is in the vicinity of an object if the distance between the position of the field user and the position of the object is below a proximity threshold, and presents the field user on graphics depicting the process, where a field user deemed to be in the vicinity of an object is presented at this object in the graphics.
Abstract:
A electromagnetic machine system includes a rotor and a stator positioned about the rotor. A current injection mechanism is coupled with windings of the stator and structured to inject electrical currents therein so as to change a flux distribution of a magnetic field produced by the stator. The injected currents may be harmonic currents. The rotor further includes an inductor positioned to interact with the magnetic field when the flux distribution is changed, to produce an electrical excitation current for exciting windings in the rotor. The machine system may be a synchronous motor or generator, and may be brushless. Applications of the current injection strategy to direct torque control and vector control are also disclosed.
Abstract:
One embodiment is a uninterruptable power supply (UPS) system including a utility disconnect switch (UDS) coupled with an input line and an output line and structured to selectably connect and disconnect the input line and the output line. The UDS includes a semiconductor switching device connected between the input line and the output line, a surge arrester coupled in parallel with the semiconductor switching device, a dynamic voltage balancing device and a static voltage balancing device which are coupled in parallel with the semiconductor switching device.
Abstract:
A system includes a first DC rail and a second DC rail, and a rectifier coupled with the first and second DC rails. A multilevel converter is also coupled with the DC rails and operable to limit input current harmonics to the rectifier. Differences between voltage phase and current phase in AC electrical power supplied to the system are compensated via closed loop control of a voltage output of the multilevel converter.
Abstract:
Technologies for calibrating a pan tilt unit with a robot include a robot controller to move a camera of the pan tilt unit about a first rotational axis of the pan tilt unit to at least three different first axis positions. The robot controller records a first set of positions of a monitored component of the robot in a frame of reference of the robot and a position of the camera in a frame of reference of the pan tilt unit during a period in which the monitored component is within a field of view of the camera for each of the at least three different first axis positions. Further, the robot controller moves the camera about a second rotational axis of the pan tilt unit to at least three different second axis positions and records a second set of positions of the monitored component in the frame of reference of the robot and a position of the camera in the frame of reference of the pan tilt unit during a period in which the monitored component is within a field of view of the camera for each of the at least three different second axis positions. Further, the robot controller determines a transformation from the frame of reference of the robot to the frame of reference of the pan tilt unit based on the first set of recorded positions and the second set of recorded positions.