Abstract:
A transmission method for transmitting a first modulated signal and a second modulated signal in the same frequency at the same time. Each signal has been modulated according to a different modulation scheme. The transmission method applies precoding on both signals using a fixed precoding matrix, applies different power change to each signal, and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device.
Abstract:
A packet error rate in a receiver needs to be effectively reduced.Solution to Problem: A transmitter 11 inserts error detection codes into information packets on one-to-one basis, at a certain layer at which signal processing is performed earlier than at a physical layer, to obtain first information packets. The transmitter 11 codes the first information packets at the physical layer to obtain second information packets, and transmits the second information packets. At the certain layer, the transmitter 11 generates parity packets by coding the information packets and inserts the error detection codes into the parity packets on one-to-one basis to obtain first parity packets. The transmitter codes the first parity packets at the physical layer to obtain second parity packets. The transmitter 11 transmits the second parity packets in accordance with a transmission request from each of one or more receivers.
Abstract:
A transmission method simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device.
Abstract:
In a multi-antenna communication system using LDPC codes, a simple method is used to effectively improve the received quality by performing a retransmittal of less data without restricting applicable LDPC codes. In a case of a non-retransmittal, a multi-antenna transmitting apparatus transmits, from two antennas, LDPC encoded data formed by LDPC encoding blocks. In a case of a retransmittal, the multi-antenna transmitting apparatus uses a transmission method, in which the diversity gain is higher than in the previous transmission, to transmit only a part of the LDPC encoded data as previously transmitted. For example, the only the part of the LDPC encoded data to be re-transmitted is transmitted from the single antenna.
Abstract:
A transmission scheme for transmitting a first modulated signal and a second modulated signal in the same frequency at the same time. According to the transmission scheme, a precoding weight multiplying unit multiplies a precoding weight by a baseband signal after a first mapping and a baseband signal after a second mapping and outputs the first modulated signal and the second modulated signal. In the precoding weight multiplying unit, precoding weights are regularly hopped.
Abstract:
Provided is a frame configuration usable for both SISO transmission and MISO and/or MIMO transmission. A frame configurator of a transmission device configures a frame by gathering data for SISO and configures a frame by gathering data for MISO and/or MIMO data, thereby to improve the reception performance (detection performance) of a reception device.
Abstract:
A wireless communication method is provided for a transmission apparatus that transmits an OFDM (orthogonal frequency division multiplexing) signal using a communication band that comprises a plurality of subcarrier groups each including a plurality of subcarriers. The method includes specifying which subcarrier group and how many subcarriers are to be used to transmit the OFDM signal and determining a configuration of a transmission frame, generating the OFDM signal by mapping data symbols according to the determined configuration of the transmission frame, and transmitting the generated OFDM signal. The number of subcarriers to be used to transmit the OFDM signal is variable, the OFDM signal may be generated using a plurality of modulation schemes including QPSK and 16QAM, and a plurality of mapping patterns are prepared for each of the plurality of modulation schemes.
Abstract:
An encoding method generates an encoded sequence by performing encoding of a given coding rate according to a predetermined parity check matrix. The predetermined parity check matrix is a first parity check matrix or a second parity check matrix. The first parity check matrix corresponds to a low-density parity check (LDPC) convolutional code using a plurality of parity check polynomials. The second parity check matrix is generated by performing at least one of row permutation and column permutation with respect to the first parity check matrix. An eth parity check polynomial that satisfies zero, of the LDPC convolutional code, is expressible by using a predetermined mathematical formula.
Abstract:
An encoding method of generating an encoded sequence by performing encoding of a given encoding rate based on a predetermined parity check matrix. The predetermined matrix is either a first parity check matrix or a second parity check matrix. The first parity check matrix corresponds to a low density parity check (LDPC) convolutional code that uses a plurality of parity check polynomials, and the second parity check matrix is generated by performing at least one of row permutation and column permutation on the first parity check matrix. A parity check polynomial satisfying zero of the LDPC convolutional code is expressible by using a specific mathematical expression.
Abstract:
Provided is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals to be transmitted over the same frequency bandwidth at the same time, including the steps of selecting a matrix F[i] from among N matrices, which define precoding performed on the plurality of baseband signals, while switching between the N matrices, i being an integer from 0 to N−1, and N being an integer at least two, generating a first precoded signal z1 and a second precoded signal z2, generating a first encoded block and a second encoded block using a predetermined error correction block encoding method, generating a baseband signal with M symbols from the first encoded block and a baseband signal with M symbols the second encoded block, and precoding a combination of the generated baseband signals to generate a precoded signal having M slots.