Abstract:
Aspects of a method and system for processing signals via an oscillator load embedded in an IC package are provided. In this regard, a hybrid circuit may comprise an oscillator, and a frequency of the oscillator may be controlled via a digital control word. Furthermore, the hybrid circuit may comprise an integrated circuit bonded to a multi-layer package and at least a portion of the oscillator may be within and/or on the multi-layer package. The at least a portion of the oscillator may be fabricated in one or more metal layers of the multi-layer package. The at least a portion of the oscillator in the multi-layer package may be fabricated utilizing microstrip and/or stripline transmission line. A frequency of the oscillator may be controlled via one or more inductors and/or capacitors in the portion of the oscillator in the multi-layer package.
Abstract:
In various embodiments, the invention provides a clock generator and/or a timing and frequency reference comprising an LC oscillator with a frequency controller to control and provide a stable resonant frequency. Such stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the oscillator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
In various embodiments, the invention provides a clock generator and/or a timing and frequency reference comprising an LC oscillator with a frequency controller to control and provide a stable resonant frequency. Such stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor adapted to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller adapted to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the oscillator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
A VCO device is described that has pre-compensation. Digitally switchable compensation capacitors are selectively activated to adjust operation of the VCO to mitigate undesirable operational effects. In some example embodiments, the digitally switchable compensation capacitors of the VCO are adjusted to compensate for the effects of activating (from a quiescent state) an output buffer driven by the VCO.
Abstract:
In various embodiments, the invention provides a frequency controller to control and provide a stable resonant frequency of a clock generator and/or a timing and frequency reference. Such stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor adapted to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller adapted to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the resonator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
According to an embodiment of the present invention, an oscillating apparatus is provided. The oscillating apparatus generates an oscillating signal, and the oscillating apparatus includes a resonating device, a transconductive device, a biasing device, and a current compensating device. The resonating device generates the oscillating signal; the transconductive device is coupled to the resonating device for providing the resonating device with a positive feedback loop; the biasing device is coupled to the transconductive device for providing the transconductive device with a biasing current; and the current compensating device is coupled between the resonating device and the biasing device for providing the biasing device with a compensating current to compensate for a current reduction of the transconductive device.
Abstract:
Tuning a radio oscillator frequency to a reference frequency is disclosed. A radio oscillator is set using a predetermined value loaded into an adjustment bit array. A highest selected bit is selected to be used in locating a final tuned value for the adjustment bit array. The final tuned value is determined by successively setting a selected bit starting with the highest selected bit in the adjustment bit array. And, the selected bit value in the final tuned value is determined using a measurement of the radio oscillator frequency and its relation to a reference frequency.
Abstract:
In various embodiments, the invention provides a discrete clock generator and/or a timing and frequency reference using an LC-oscillator topology, having a frequency controller to control and provide a stable resonant frequency, which may then be provided to other, second circuitry such as a processor or controller. Frequency stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor adapted to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller adapted to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the resonator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.