Abstract:
Disclosed is a graft copolymer highly improving the adhesion resistance and impact strength, a method of preparing the same, and PVC composition containing the same, wherein the graft copolymer comprises i) 55 to 85 wt % of a conjugated diene-based rubber core; and ii) 15 to 45 wt % of a graft shell surrounding the rubber core, and formed by comprising a (meth)acrylate-based monomer, and at least one selected from the group consisting of a vinyl-based monomer having a polyalkylene oxide group represented by the following Formula 1; in which the graft copolymer includes 0.1 to 5 wt % of the vinyl-based monomer having the polyalkylene oxide group represented by the following Formula 1: wherein R is independently hydrogen, or C1 to C4 alkyl group, and n is independently 3 to 14.
Abstract:
The present invention relates to a flame retardant styrene-based resin composition with high impact property. The styrene-based resin composition of the present invention comprises 1-30 parts by weight of a flame retardant, 0.5-15 parts by weight of a flame retardant aid and 0.1-15 parts by weight of a styrene-containing graft copolymer per 100 parts by weight of a base resin comprising a rubber-modified styrene-based copolymer and offers high impact property and good rigidity and fluidity, without appearance problem under a variety of processing conditions.
Abstract:
The present invention relates to a nanocomposite thermoplastic resin composition with flame resistance comprising a basic resin mixture, which comprises a rubber-modified styrene-containing graft copolymer, a thermoplastic polyamide resin and a styrene-containing copolymer, a compatibilizer, a melamine based flame retardant and an organic layered silicate. The nanocomposite thermoplastic resin composition of the present invention offers superior flame resistance without comprising a halogen based flame retardant.
Abstract:
The present invention relates to a graft copolymer for transparent thermoplastic polyurethane resin, a preparing method thereof and a polyurethane resin composition comprising the same, more precisely a graft copolymer for transparent thermoplastic polyurethane resin prepared by graft copolymerization of (a) 50-85 weight % of rubber latex having multi-layered structure composed of an inner layer and an outer layer comprising a conjugated diene monomer and an ethylenically unsaturated aromatic compound in which the refraction index of the inner layer is greater than that of the outer layer; and (b) 15-50 weight % of a C2-C20 vinyl monomer. The present invention provides a thermoplastic polyurethane resin composition having excellent color properties, calendaring properties, low temperature impact strength and transparency.
Abstract:
Disclosed is a method for preparing a thermoplastic resin with superior impact resistance, chemical resistance and processability as well as excellent gloss and whiteness. The method includes emulsion-polymerizing a conjugated diene compound monomer to prepare a rubber latex having an average particle diameter of 1,800 Å to 5,000 Å, a polymerization conversion ratio of at least 90% and a swelling index of 12 to 40, an average gel content of 70 to 95%, emulsion-polymerizing 45 to 75 parts by weight of the rubber latex with 17 to 40 parts by weight of an aromatic vinyl compound and 4 to 20 parts by weight of a vinyl cyanide compound to prepare a graft copolymer latex, and coagulating the graft copolymer latex with a coagulant at 60 to 80° C., and aging the graft copolymer latex at 80 to 99° C. to obtain a graft copolymer powder.
Abstract:
The present invention relates to an acrylonitrile (ASA) type thermoplastic resin composition with excellent weatherability and appearance properties, and more particularly, to an acrylate-styrene-acrylonitrile type thermoplastic resin composition comprising a) an acrylate-styrene-acrylonitrile graft copolymer; b) a butadienc-acrylonitrile methylmethacrylate graft copolymer; c) a copolymer of aromatic vinyl compound and vinylcyanide compound; and d) an alkyl acrylate copolymer, which has remarkably improved appearance properties such as scratch resistance, color (color stability) and gloss as well as excellent basic properties and weatherability.
Abstract:
The present invention relates to a method for preparing a graft rubber latex having a low residual monomer content, and more precisely, a method for preparing a graft rubber latex having a high rubber content, which is characterized by graft-copolymerization of a mixture of a rubber latex having a gel content of at least 95% and an average particle diameter of 2,500˜5000 Å, a monomer mixture comprising one or more compounds selected from a group consisting of aromatic vinyl compound, vinyl cyan compound and acrylate compound, and small particle size latex produced by emulsion polymerization. The method of the present invention has the advantages of speedy processes with excellent latex stability and at the same time reducing residual monomer content in the latex upon completion of the polymerization, improving perceived quality of the product and increasing yield.
Abstract:
The present invention provides a method for manufacturing the imide-substituted polymer comprising the following four consecutive steps of (i) the copolymerization step of copolymerizing aromatic vinyl monomers and unsaturated dicarboxylic anhydride monomers, (ii) the separation step of removing the unreacted monomers and solvents from the abovementioned copolymerized solution continuously supplied to the separator, (iii) the imide substitution step of reacting unsaturated dicarboxylic anhydride units in said copolymers with primary amines, and (iv) the devolatilization step of removing low-molecular-weight volatiles from the polymer solution. The imide-substituted polymer manufactured according to the methods in the present invention has greatly improved the heat resistance and the productivity as the content of aromatic vinyl homopolymers is reduced significantly and the reaction time is shortened extensively.
Abstract:
Provided are a rubber latex used as a substrate for an impact modifier, a preparation method thereof, and an impact modifier prepared using the rubber latex. The rubber latex includes a rubber monomer as a main component and has a decreasing gel content from a core to a shell(s). The preparation method includes polymerizing a core followed by polymerization of a shell(s) has a lower gel content that the core. The impact modifier is prepared by common graft polymerization using the rubber latex as a substrate. The rubber latex has a high gel content core and a low gel content shell (s), and thus, is free from problems involved in low or high gel content rubber particles. The rubber latex can be used as a substrate for a high efficiency impact modifier with high rubber content and enhanced impact strength and processability.
Abstract:
The present invention relates to a process for preparing a heat-resistant thermoplastic resin, especially to a process for preparing a heat-resistant thermoplastic resin having superior heat-stability prepared by mixing a graft ABS polymer and a heat-resistant copolymer. The heat resistant thermoplastic resin prepared by the process of the present invention not only has superior heat-resistant properties, impact resistant properties, and workability, but also has superior heat-stability.