Abstract:
Semiconductor device, method for fabricating the same and electronic devices including the semiconductor device are provided. The semiconductor device comprises an interlayer insulating layer formed on a substrate and including a trench, a gate electrode formed in the trench, a first gate spacer formed on a side wall of the gate electrode to have an L shape, a second gate spacer formed on the first gate spacer to have an L shape and having a dielectric constant lower than that of silicon nitride, and a third spacer formed on the second gate spacer.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
Abstract:
An apparatus and method for determining a washing pattern of a direct drive inverter-type washing machine. The apparatus comprises a voltage converter for inputting an external alternating current (AC) voltage and rectifying and smoothing the inputted AC voltage to convert it into a drive voltage necessary to a washing mode of a washing machine, a switch for performing a switching operation in response to a motor drive control signal to transfer the drive voltage from the voltage converter to a motor so as to rotate or stop a washing tub, a voltage variation sensing device for measuring a voltage variation when the motor rotates in response to the drive voltage transferred from the switch and outputting the measured result as a voltage variation sense signal, and a microcomputer for driving the motor in a laundry amount sensing pattern at the time that laundry is put into the washing tub, judging the amount of the laundry and the amount of water supply depending on the laundry amount, judging the type of a material of the laundry in response to the voltage variation sense signal at the time that wash water is supplied to the tub, producing an optimum washing pattern appropriate to the amount and material type of the laundry within the washing tub and generating the motor drive control signal to drive the motor in the produced optimum washing pattern.
Abstract:
This invention relates to a method for braking a washing machine comprising the steps of: determining whether or not a motor is braking; transmitting a PWM (Pulse Width Modulation) control signal by setting up the initial phase and the duty ratio according to the voltage flows in the system when an operation mode determined by the previous step as a braking mode; comparing a capacity and a variance of the detected voltage with a reference voltage predetermined during the previous step; and controlling a motor driver by re-establishing the control phase and the duty ratio are re-established until the motor is stopped when the comparison result of the previous step indicates that the capacity and the variance of the voltage are lower than the predetermined reference level.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.