Abstract:
The present invention provides a method of handing off a mobile unit that supports multiple quality-of-service (QoS) application layer clients that operate according to multiple wireless access technologies in a packet-switched communication system. The method includes receiving information indicating a request to hand off the mobile unit from a first access network that operates according to a first wireless access technology to a second access network that operates according to a second wireless access technology. The mobile unit established a first session according to the first wireless access technology at a first QoS level. The method also includes establishing, concurrently with the first session and in response to receiving the handoff request, a second session according to the second wireless access technology at the first QoS level. The method further includes communicating with the mobile unit at the first QoS level using the first and second sessions.
Abstract:
Apparatus and a method for establishing a cellular mobile call. If no radio traffic (voice or data) channels are available for a calling Mobile Station (MS), then a test is made to determine the expected wait time before a channel becomes available. If the expected wait time is less than a first threshold, then the call request is queued. If a channel does not become available before a second time threshold, then the caller is notified that the call has been queued and is expected to be established in a short time. A control message is sent to the MS to trigger an indication of the queued status to the user. The indication may be one or more tones, a data display, or the playing of a pre-recorded announcement. If the expected wait time is more than the first threshold, the caller is given the opportunity to be called back when a radio channel becomes available. Advantageously, the number of failed calls because of unavailable traffic channels is reduced, and the caller's annoyance level is reduced.
Abstract:
Apparatus and a method for establishing a cellular mobile call. If no radio traffic (voice or data) channels are available for a calling or called mobile station (MS), then a test is made to determine the expected wait time before a channel becomes available. If the expected wait time is less than a first threshold, then the call or the call request is queued. If a channel for an incoming call to an MS does not become available before a second time threshold, then the caller is notified by an announcement that the call has been queued and is expected to be established in a short time. If the caller of an incoming call to the MS does not disconnect, then the MSC waits for an available channel and establishes a connection to the MS over that available channel. For an outgoing call from an MS, a control message is sent to the MS to trigger an indication of the queued status to the user. The indication may be one or more tones, a data display, or the playing of a pre-recorded announcement. Advantageously, the number of calls blocked because of unavailable traffic channels is reduced. Advantageously, the same arrangement can be used to reduce blocking of calls because of unavailability of trunks for a link of a call connection.
Abstract:
The distributed cellular communication system architecture for the co-existence of multiple technologies uses the mapping table capability of the Asynchronous Transfer Mode network and the multi-layer nature of the signaling protocol that is used in cellular communication networks to transparently interconnect cellular communication network elements that use different technologies and/or signaling protocols. The present distributed cellular communication system architecture avoids the need for significant changes in the cellular call processing software to accommodate new cellular communication network components by inserting signal routing data into the Asynchronous Transfer Mode network routing tables to thereby interconnect signals between compatible endpoints that are connected to the Asynchronous Transfer Mode network. The layer 1 and layer 2 protocols of the Asynchronous Transfer Mode network are used as the conduit that carries the signals between endpoints and are the same for all technologies and signaling protocols. The data contained in the upper layers of the multi-layer protocol are technology and signaling protocol specific, but are not interpreted by the Asynchronous Transfer Mode network, they are simply routed to a designated endpoint pursuant to the data entries in the routing tables of the Asynchronous Transfer Mode network.
Abstract:
A telecommunication system routs real-time information traffic from an originating digital radio unit served by an originating network to a terminating unit served by a terminating network via an intermediate network interconnecting the originating and terminating networks. The originating digital radio unit has an encoder/decoder (e.g., a vocoder) for generating digital wireless frames from information that is input thereto. The originating network includes an originating node with an encoder/decoder for performing wireless-specific conversion of the digital wireless frames to digital wireline (e.g., PCM) traffic. The intermediate network includes an originating-end interface node with an encoder/decoder for compressing the digital wireline traffic for transport across the intermediate network. Optimization of communications routed between the originating and terminating units is achieved by routing the digital wireless frames without wireless-specific conversion being performed at the originating node of the originating network nor compression conversion being performed at the originating-end interface node of the intermediate network, such that the rate of information traffic throughput is maximized.
Abstract:
The cellular call processor having concurrent instances of call models supports mixed media communication connections. The cellular call processor processes each of the media components of the mixed media communication connection in an independent, yet coordinated manner. Thus, each of the media components of the mixed media communication connection can be processed in an efficient media-specific manner and even directed to different destinations. The cellular call processor can implement this capability in a plurality of ways, one of which is to maintain the existing voice call model and create a new call model for each of the other call components in a media-specific manner. Alternatively, multiple instances of the same call model can be used, with each call component being served by a separate instance of the call processing code. Communications among the various instances of the call models occur only at the call setup and release and the call models can be implemented in the same physical network element or can be implemented in separate network elements that are customized for the type of call component being processed.
Abstract:
A system and method for measuring the approximate distance and direction of a mobile unit from a plurality of cells in order to determine whether and how to handoff the mobile unit and which cell may be the best serving cell. The CDMA timing system is used to provide an estimate of the subscriber's location to be determined by a CDMA base station. A distance calculation is made by the serving cell site sending a request for signal strength message to a mobile unit. The mobile unit measures pilot signal strength and a time offset from the expected time of such pilot signals. The signal strength and time offsets are returned to the cell site. a processor in the system can then determine if a handoff is really desirable, and with which of the cell sites is the best serving all for the mobile unit the mobile unit with a high degree of confidence that the call will be maintained. Also, an adaptive database may be implemented wherein a mobile unit is tracked to the edge of the coverage area and, a database is kept of successful handoffs to another carrier.
Abstract:
A wireless telecommunications system is disclosed that is capable of providing both public wireless service and virtual private network service on existing IS-95 CDMA facilities without changes to the air interface, the hardware design or the protocols for interacting with home location registers. An illustrative embodiment of the present invention comprises: broadcasting from a radio a first SID/NID signal and a FOR.sub.-- NID.sub.-- REG signal to a wireless terminal, wherein the first SID/NID signal is associated with a first set of user zones; receiving from the wireless terminal: (1) a indicium of the wireless terminal's identity, and (2) a request to register the wireless terminal based on a second SID/NID signal, wherein the second SID/NID signal is associated with a second set of user zones; transmitting the indicium of the wireless terminal's identity to a database; receiving from the database a prioritized list of user zones based on the indicium of the wireless terminal's identity; transmitting to the home location register a pseudo directory number that is based on a first user zone, which first user zone is the user zone that has the highest priority in the prioritized list of user zones and that is also a member of the second set of user zones; and receiving from the database a feature set based on the pseudo directory number.
Abstract:
Communication networks and methods are disclosed for performing online charging credit control in a visited network when a user is roaming. The visited network which is providing service to a roaming user includes a proxy online charging system (OCS) that communicates with a home OCS in a home network of the user. The proxy OCS transmits an online charging request message to a home OCS in a home network for the roaming user requesting charging information for the roaming user. The proxy OCS receives an online charging response message from the home OCS that includes the charging information for the roaming user. The proxy OCS then processes the charging information to perform credit control for one or more network elements in the visited network that is serving the session.
Abstract:
The present invention provides a method for supporting handoffs of a first mobile unit in a wireless communication system that supports multiple vocoder technologies. The method includes allocating, prior to completion of a handoff of the first mobile unit, a transcoder function to the first mobile unit. The method also includes detecting a change in a format of at least one packet received from the first mobile unit. The change indicates that the vocoder technology used by the first mobile unit to form packets has changed. The method also includes transcoding packets in response to detecting the change in the format.