Abstract:
Methods, apparatus and systems for marking a presence or absence of an underground facility. Marking material is dispensed, via actuation of an actuation system of a marking device, onto a target surface. Environmental information regarding at least one environmental condition of an environment in which the marking device is located is received via at least one communication interface of the marking device, and marking information is logged into local memory of the marking device. In one aspect, the stored marking information includes at least some of the environmental information.
Abstract:
Locate information relating to use of a locate device to perform a locate operation may be acquired from one or more input devices, logged/stored in local memory of a locate device, formatted in various manners, processed and/or analyzed at the locate device itself, and/or transmitted to another device (e.g., a remote computer/server) for storage, processing and/or analysis. In one example, a locate device may include one or more environmental sensors and/or operational sensors, and the locate information may include environmental information and operational information derived from such sensors. Environmental and/or operational information may be used to control operation of the locate device, assess out-of-tolerance conditions in connection with use of the locate device, and/or provide alerts or other feedback. Additional enhancements are disclosed relating to improving the determination of a location (e.g., GPS coordinates) of a detecting tip of the locate device during use, a group/solo mode, and tactile functionality of a user interface.
Abstract:
Marking devices of the type used for marking a presence or an absence of underground facilities and including motion detectors such as accelerometers are described. Methods of collecting and analyzing motion information indicative of the motion of a marking device are also described. The motion information may be used for various purposes, including documenting performance of a marking operation and/or performance of a particular technician, pattern determination and comparison, as well as quality control assessment.
Abstract:
Control of locating equipment used by a locate technician to perform a locate and/or marking operation to detect and/or mark a presence or an absence of at least one underground facility at a work site (e.g., locate receivers, locate transmitters, marking devices and/or combined locate and marking devices) is based on time-keeping information associated with the technician and/or wage and hour compliance information. In one example, one or more control signals are generated to at least partially enable or disable one or more piece of locating equipment based at least in part on a time clock status of the locate technician (e.g., clocked-in or clocked-out), and/or wage and hour compliance information associated with the locate technician and/or the work site (e.g., relating to required breaks and/or maximum number of work hours).
Abstract:
A vehicle-based complex event processing (CEP) engine executes on a hardware computer processor in a vehicle. The CEP engine receives a first input stream onto which vehicle information related to the vehicle is published, and applies at least one query to the first input stream. The CEP engine then assesses, based on application of the query/queries, if a vehicle-related event has occurred and, if so, the CEP engine publishes an indication of occurrence of the vehicle-related event on at least one output stream of the CEP engine. In one example, the CEP engine may receive a second input stream onto which image information is published, wherein the image information is based at least in part on data provided by at least one on-board vehicle camera.
Abstract:
Methods, apparatus, and systems for providing information regarding a locate and/or marking operation to identify a presence or an absence of at least one underground facility within a dig area. At least one notification indicating a status of the locate and/or marking operation is electronically transmitted and/or stored so as to inform at least one party associated with requesting the operation (a “requesting party,” e.g., an excavator, a property owner, a facility owner, a regulatory authority, a damage investigator, etc.) of the status of the operation. In one aspect, a requesting party may designate a preferred format, content, and/or method of receiving notifications regarding the locate and/or marking operation. In another aspect, a computer-generated GUI is provided to facilitate submission of requests, generation of “virtual white line” images to indicate one or more dig areas on a digital image of a work site, and/or selection of notifications and preferences for same. In yet another aspect, a requesting party may provide an acknowledgement of receipt (e.g., a “return receipt”) for one or more received notifications.
Abstract:
A method performed by a device may include receiving information regarding a particular geographic area; retrieving an aerial image of the particular geographic area; displaying the aerial image; determining an approximate geographic location of a mark denoting an underground facility; overlaying, on the displayed aerial image, information concerning the approximate geographic location of the mark denoting the underground facility; and storing the aerial image and the information concerning the approximate geographic location of the mark denoting the underground facility.
Abstract:
A marking system may hold a container from which markers are dispensed to mark the presence or absence of an underground facility in a dig area. The container may identify a marker characteristic regarding the markers in the container. The marking system may receive activation of a trigger, dispense a marker from the container when the trigger is activated, and store the marker characteristic and time data when the trigger is activated. In other embodiments, the marking system may dispense a marker, determine location data and/or time data, and substantially simultaneously trigger the dispensing of the marker and logging of the location data and/or the time data. The location data identifies a geographic location where the marker is dispensed and the time data identifies the time when the marker is dispensed.
Abstract:
Methods and apparatus for generating electronic records of marking operations for underground facilities/utilities. Electronic records of marking information may be logged/stored in local memory of a marking device, formatted in various manners, processed and/or analyzed at the marking device itself, and/or transmitted in whole or in part to another device (e.g., a remote computer/server) for storage, processing and/or analysis. In one example, service-related information and/or ticket information is collected and logged into an electronic record of a marking operation. Such information may in some cases be logged together with actuation data based on one or more actuations of a marking device (e.g., a trigger-pull to dispense marking material).
Abstract:
A marking tool and a method for marking a presence or an absence of at least one underground facility is presented. The method includes dispensing a marker when a trigger of a marking tool is actuated. The method further includes identifying at least one characteristic associated with the marker or the dispensing of the marker. The method further includes storing the at least one characteristic associated with dispensing the marker when the actuation of the trigger is signaled.