Abstract:
Ferroelectric polymer films are applied in a charge transfer imaging process to generate latent electrostatic images on a dielectric receiver media. The dielectric receiver media may be the final imaging substrate which is then xerographically toned and fixed, e.g., Versatec dielectric paper, or an intermediate surface from which a toned image is transferred to plain paper. Charges may be generated applying either the piezoelectric or the pyroelectric effect exhibited by ferroelectric films.
Abstract:
The present invention is a method and apparatus for producing an image on the image receiving member. The method and apparatus employ a photoconductive member that is charged by the deposition of charged marking particles on an outer surface thereof. Subsequently, selective regions of the photoconductor are selectively exposed to light patterns to cause the photoconductor to exhibit a photoresponse, thereby collapsing the internal electric field in the exposed regions but not in the unexposed regions. When a field neutralizing bias and acoustic energy are applied in a transfer region, toner in the unexposed regions is transferred to an intermediate member or any substrate interposed between the photoconductive surface and the biasing electrode.
Abstract:
A system to combine the transfer and fixing xerographic steps of a xerographic printer into one, as well as to eliminate the need for an electrical field for transfer. The image is transfixed directly from a photoconductor to the paper or other suitable substrate. Appropriate pressure is applied during this step to cold-pressure fix the toner on the paper, taking into account the type of substrate and type of toner. The cold pressure transfix can be done either directly from a photoreceptor, without an intermediate transfer belt (ITB), eliminating all electrostatic transfer subsystems and a fusing operation. Alternatively, for engines with an intermediate transfer belt (ITB), the cold pressure transfix could replace a needed second transfer and fuser system.
Abstract:
Fixing systems and methods for fixing marking material to a substrate are provided. An exemplary embodiment of the fixing systems includes a pre-heating device including: a first fixing member including a first surface; a second fixing member including a second surface forming a first nip with the first surface; and a first thermal energy source for heating at least one of the first surface and the second surface; wherein the first surface and the second surface contact and pre-heat a substrate and marking material comprising toner disposed on a surface of the substrate when the substrate is received at the first nip to produce the temperature condition: Tamb
Abstract:
Fixing systems and methods for fixing marking material to a substrate are provided. An exemplary embodiment of the fixing systems includes a pre-heating device including: a first fixing member including a first surface; a second fixing member including a second surface forming a first nip with the first surface; and a first thermal energy source for heating at least one of the first surface and the second surface; wherein the first surface and the second surface contact and pre-heat a substrate and marking material comprising toner disposed on a surface of the substrate when the substrate is received at the first nip to produce the temperature condition: Tamb
Abstract:
Aspects of the disclosure provide a printing method that can utilize a lightly pigmented toner along with a darkly pigmented toner to improve the image quality. The method can include receiving a dataset corresponding to a printing of a printing system using a darkly pigmented toner. The printing system may have an undesirable optical density printing range for the darkly pigmented toner. Further, the method can include converting the dataset to a first dataset corresponding to a first printing of the printing system using the darkly pigmented toner, and a second dataset corresponding to a second printing of the printing system using a lightly pigmented toner. The first dataset can avoid the undesirable optical density printing range for the darkly pigmented toner, and a combination of the first printing and the second printing providing a substantially same printed optical density corresponding to the received dataset.
Abstract:
In accordance with various embodiments, there are printing apparatuses and methods of enhancing an image quality on a media. The method of enhancing an image quality on a media can include providing an ink-based halftone image on a media, wherein the halftone image can include an amount of noise. The method can also include depositing a transparent overcoat layer at least over the halftone image, wherein the transparent overcoat layer can include a major amount of cross-linkable resin and a minor amount of a photoinitiator. The method can further include embossing the transparent overcoat layer to form an embossed micro-structured overcoat layer and curing the embossed micro-structured overcoat layer to form the micro-structured overcoat layer, such that the micro-structured overcoat layer reduces the amount of noise.
Abstract:
At least sequential current and subsequent sheets of a print job are received in a document processing system. Each sheet includes a front image and a back image. The received sheets are scheduled to be printed with at least one of a first and a second sequence by at least one of a first and a second marking engine based on a comparison of the image content in corresponding selected portions of each front and back image.
Abstract:
An apparatus for developing a latent image recorded on an imaging surface with toner, including: a developer housing including a reservoir for storing a supply of toner; a donor member for transporting toner on an outer surface of the donor member to a development zone; a purging system, adjacent to the donor member, for removing toner the donor member and the reservoir.
Abstract:
An apparatus for non-interactive, dry powder development of electrostatic Images composed of solid areas and fine lines areas on an imageable surface including a housing containing developer material; a magnetic member, spaced a predefined distance from said image, for transporting said developer material from said housing to develop solid areas of said image, said magnetic roll including an magnetic core and a cylindrical sleeve enclosing and rotating about said magnetic core; and a resonating donor member, adjacent to said magnetic roll and spaced from the image receiving member and adapted to transport marking particles to a development zone adjacent the image receiving member; an electrode positioned in the development zone between the image receiving member and the donor member; a voltage supply for electrically biasing said electrode during a developing operation with an alternating current to detach marking particles from said resonating donor member, forming a cloud of marking particles in the development zone, and developing fine line areas of said image from the cloud.