Abstract:
Catalyst systems useful in addition polymerization reactions comprising a Group 4 metal complex and a silylium salt activating cocatalyst are prepared by contacting the metal complex with a silylium salt of a compatible, non-coordinating anion, optionally the silylium salt is prepared by electrochemical oxidation and splitting of the corresponding disilane compound.
Abstract:
Cationic Group 4 or Lanthanide metal catalysts containing a single, delocalized n-bonded group are prepared by contacting a metal complex with a carbonium salt of a compatible, non-coordinating anion.
Abstract:
A monocyclopentadienyl or substituted monocyclopentadienyl metal complex containing compound useful as a polymerization catalyst corresponding to the formula:CpMX.sub.n.sup.+ A.sup.-wherein:Cp is a single .eta..sup.5 -cyclopentadienyl or .eta..sup.5 -substituted cyclopentadienyl group optionally covalently bonded to M through a substituent;M is a metal of Group 3-10 or the Lanthanide Series of the Periodic Table bound in the .eta..sup.5 bonding mode to the cyclopentadienyl or substituted cyclopentadienyl group;X each occurrence independently is selected from the group consisting of hydride, halo, alkyl, aryl, silyl, germyl, aryloxy, alkoxy, amide, siloxy, neutral Lewis base ligands and combinations thereof having up to 20 non-hydrogen atoms, and optionally one X together with Cp forms a metallocycle with M;R is alkyl or aryl of up to 10 carbons;n is one or two depending on the valence of M; andA is a noncoordinating, compatible anion of a Bronsted acid salt.
Abstract:
The present invention generally relates to an apparatus and method for running a plurality of essentially simultaneous exothermic reactions, endothermic reactions, or a combination thereof in sealed reactors and obtaining physico-chemical data, preferably temperature data, and, optionally, time data, for the reactions, wherein reaction mixtures in the sealed reactors are adiabatically thermally insulated from one another so that temperature in one sealed reactor does not materially affect temperature in any other, including an adjacent, sealed reactor.
Abstract:
This invention is a stirrer, impeller or stirrer paddle used for mixing small volumes of liquid in a vessel having a small capacity for liquid, said impeller being characterized by an impeller blade connected to the bottom portion of a support, where the blade has an opening extending through the blade from the front to the back surface of the blade said opening extending across the rotational axis of the impeller. The invention is also an apparatus comprising that blade, a method of mixing components using the apparatus and an array of two or more of the apparatuses.
Abstract:
A monocyclopentadienyl or substituted monocyclopentadienyl metal complex containing compound useful as a polymerization catalyst corresponding to the formula: CpMXn+A− wherein: Cp is an &eegr;5-substituted cyclopentadienyl group optionally covalently bonded to M through a substituent, said Cp being substituted in at least one occurrence with an alkoxy or aryloxy group; M is a metal of Group 3-10 or the Lanthanide Series of the Periodic Table bound in an &eegr;hu 5 bonding mode to the cyclopentadienyl or substituted cyclopentadienyl group; X each occurrence independently is selected from the group consisting of hydride, halo, alkyl, aryl, silyl, germyl, aryloxy, alkoxy, amide, siloxy, neutral Lewis base ligands and combinations thereof having up to 20 non-hydrogen atoms, and optionally one X together with Cp forms a metallocycle with M; R is alkyl or aryl of up to 10 carbons; n is one or two depending on the valence of M; and A is a noncoordinating, compatible anion of a Bronsted acid salt.
Abstract:
A compound useful as a cocatalyst or cocatalyst component, especially for use as an addition polymerization catalyst compound, corresponding to the formula: (A*+a)b(Z*J*j)−cd, wherein: A* is a cation of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, said A* having a charge +a, Z* is an anion group of from 1 to 50, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is a number from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d, and provided further that one or more of A*, Z* or J* comprises a hydroxyl group or a polar group containing quiescent reactive functionality.
Abstract:
Disclosed are compounds useful as catalyst activators for olefin polymerization, comprising structures of the following formulae: wherein: L+ is a protonated derivative of an element of Group 15 of the Periodic Table of the Elements, additionally bearing two hydrocarbyl substituents of from 1 to 50 carbons each, or a positively charged derivative of an element of Group 14 of the Periodic Table of the Elements, said Group 14 element being substituted with three hydrocarbyl substituents of from 1 to 50 carbons each; R1 is a divalent linking group of from 1 to 40 non-hydrogen atoms; R2 independently each occurrence is a ligand group of from 1 to 50 nonhydrogen atoms with the proviso that in a sufficient number of occurrences to balance charge in the compound, R2 is L+—R1—; M1 is boron, aluminum or gallium; Arf independently each occurrence is a monovalent, fluorinated organic group containing from 6 to 100 non-hydrogen atoms; Y is a Group 15 element; and Z is a Group 14 element.
Abstract:
Novel Group 4 metal complexes wherein the metal is in the +2, +3, or +4 formal oxidation state containing two ligand groups bound by n-electrons, at least one of which is a cyclic or noncyclic, non-aromatic, anionic, dienyl ligand group and having a bridged ligand structure, catalytic derivatives of such complexes; and the use thereof as catalysts for polymerizing addition polymerizable monomers are disclosed.
Abstract:
A gas phase olefin polymerization wherein the catalyst comprises a novel Group 4 transition metal complex containing a boron or aluminum bridging group containing a nitrogen containing group, especially an amido group.