Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.
Abstract:
The disclosed embodiments provide a component for a portable electronic device. The component includes a structural frame within the portable electronic device and an amorphous diamond-like carbon (DLC) coating deposited on the surfaces and the edges of the structural frame, wherein the amorphous DLC coating increases a thermal conductivity of the structural frame.
Abstract:
An electronic device may have a display. The display may have an active region in which display pixels are used to display images. The display may have one or more openings and may be mounted in a housing associated with the electronic device. An electronic component may be mounted in alignment with the openings in the display. The electronic component may include a camera, a light sensor, a light-based proximity sensor, status indicator lights, a light-based touch sensor array, a secondary display that has display pixels that may be viewed through the openings, antenna structures, a speaker, a microphone, or other acoustic, electromagnetic, or light-based component. One or more openings in the display may form a window through which a user of the device may view an external object. Display pixels in the window region may be used in forming a heads-up display.
Abstract:
A system and methods to extending the overall display area for a device. At or near the borders of a device, pixel pitch between adjacent pixels may be increased such that overall pixel placement may be provided closer to a border of a display of a device. In one embodiment, pixel drive circuitry may be located in the spacing between adjacent pixels. Additionally, various optical systems and techniques may be utilized to provide an appearance of a lack of a border around the display such as decreasing the size of border pixels, overdriving the border pixels, or utilizing a light pipe on a surface above the border pixels.
Abstract:
An electronic device for predicting or anticipating a user's operational desires. The electronic device is ready to perform the anticipated function without input from the user by using sensors to sense environmental attributes. The sensors can include an ambient light sensor, a force sensor, a temperature sensor, an ambient noise sensor, and a motion sensor. The electronic device also includes a control mechanism for switching between modes for the device.
Abstract:
Electronic devices that contain flexible displays and one or more display-based speaker structures may be provided. The speaker structures may be positioned under the flexible display. Portions of the flexible display may be used as speaker membranes for the speaker structures. The speaker structures may be driven by transducers that convert electrical audio signal input into sound. Piezoelectric transducers or transducers formed from coils and magnets may be used to drive the speaker structures. Speaker membranes may be formed from active display areas of the flexible display. Some, all, or substantially all of the flexible display may be used as a speaker membrane for one or more display-based speaker structures. An optional cover layer may be provided with speaker openings so that sound may pass from the display-based speaker structures to the exterior of the device.
Abstract:
The disclosed embodiments relate to techniques for facilitating thermal transfer in a portable electronic device. This portable electronic device may include a battery pack, which includes a battery cell and enclosure material for enclosing the battery cell. This enclosure material extends beyond the enclosure for the battery cell to facilitate thermal transfer within the portable electronic device.
Abstract:
A personal media device includes at least a housing having at least a highly curved portion. The housing includes at least one opening suitably sized to accommodate a multi-pin connector. A portion of the multi-pin adapter associated with the highly curved portion includes at least a spring loaded, small form factor, electrical contact arranged to provide EMI ground contact when a plug is inserted into and engages the multi-pin connector assembly. In one embodiment, the spring loaded electrical contact takes the form of a dimple formed of conductive material such as stainless steel or copper.
Abstract:
A modular material antenna assembly is provided that includes an antenna block having a portion with a shape that interlocks with a corresponding portion of an electrically non-conductive frame and secures the antenna block to the electrically non-conductive frame. The electrically non-conductive frame is attached to an interior of an electrically conductive housing so that the electrically non-conductive frame and the electrically conductive housing form an integrated structure. An antenna flex is then mechanically secured to the antenna block. The antenna flex may also be electrically connected to a circuit board. The frame is designed to support a cover glass for the portable electronic device and may be affixed to a housing. The dielectric constant of the antenna block is substantially less than the dielectric constant of the frame.
Abstract:
An automatic hold switch is disclosed. The automatic hold switch provides a means for automatically switching a hold feature on and off. When the hold feature is on, one or more input devices of a portable electronic device are disabled or prevented from providing input signals. When the hold feature is off, one or more input devices of a portable electronic device are enabled or allowed to provide input signals. Because the user no longer has to manually control the hold feature, the number of actions that need to be taken by the user is reduced. In one example, the automatic hold switch is embodied with light sensors that detect when the device is in a dark environment and when the device is in a light environment. A dark environment indicates to the portable electronic device that the user wishes not to input and therefore the hold feature is turned on. A lighted environment indicates to the portable electronic device that the user wishes to input and therefore the hold feature is turned off.