Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.
Abstract:
An electronic device may be provided with a display and a multi-layer printed circuit. Integrated circuits and other components may be mounted to the multi-layer printed circuit. The display and multi-layer printed circuit may share a common layer formed from a flexible substrate. The flexible substrate may have portions that are integrated into the display and portions that are integrated into the multi-layer printed circuit board. The flexible substrate may contain patterned conductive traces that are used to route signals from components in the multi-layer printed circuit to display circuitry such as a display driver integrated circuit. An array of thin-film transistors may be used to control the emission of light from the display and may be formed on portions of the flexible substrate that are integrated into the display. The display may be a flexible display that includes an array of organic light-emitting diodes.
Abstract:
A tablet device with a flexible cover is disclosed. Thin flexible display technology can be integrated into the flexible cover without affecting the overall form factor of the cover or tablet device. Adding the integrated display to the flexible cover greatly enhances the overall functionality of the tablet device.
Abstract:
An electronic device having a housing structure that is configured to receive at least one glass cover is disclosed. The glass cover serves to cover a display assembly provided within the electronic device. The glass cover can be secured to the housing structure so as to facilitate providing a narrow border between an active display area and an outer edge of the housing structure. The enclosure for the electronic device can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.
Abstract:
Systems, methods, and devices are provided in which photodetectors disposed throughout a display are used to control the display brightness. The photodetectors are to be used for ambient light sensing, proximity sensing, or to compensate for aging OLEDs. In some embodiments, photodiodes are fabricated with OLEDs during the TFT fabrication process. In some embodiments, the photodetectors may be disposed throughout the display in zones containing OLEDs. The photodetectors are used to control the display brightness and color for the OLEDs in areas around each photodetector based on ambient light, aging, and/or nearby objects. A controller makes driving strength adjustments to the OLEDs in each zone independent of other zones. Photodetectors disposed throughout the display may improve proximity sensing and provide additional functionality to the device.
Abstract:
Disclosed embodiments relate to a force detection system that detects force exerted on a flexible display based upon changes in resistance and/or capacitance. In one embodiment, a method includes measuring a baseline comprising a baseline resistance or a baseline capacitance or both of a force measurement layer disposed within or overlaid on the display panel. The method further includes detecting a change in the baseline resistance or the baseline capacitance or both and calculating a change location where the change in the baseline resistance or the baseline capacitance or both occurred. The method also includes calculating a magnitude of the change in the baseline resistance or the baseline capacitance or both.
Abstract:
An electronic device may have a hollow display cover structure. The hollow display cover structure may be formed from a structure having an inner surface. The structure may be an elongated member having a longitudinal axis. A material such as sapphire, other crystalline materials, or other transparent materials may be used in forming the hollow display cover structure. A flexible display layer such as an organic light-emitting diode display layer or other flexible display structure may be wrapped around the longitudinal axis to cover the interior surface of the hollow display cover structure. The electronic device may have a touch sensor, accelerometer, gyroscope, and other sensors for gathering input such as user input. The electronic device may use one or more sensors to gather information on rotational motion of the device and can display content on the flexible display layer accordingly.
Abstract:
A microphone assembly for an electronic device is described. The microphone assembly can include a microphone, a microphone boot and a printed circuit board. The microphone boot can be a composite microphone boot that is formed from multiple materials. A hardness of the each of the materials used in the microphone boot can be selected to improve sealing integrity and reduce shock transmission. In one embodiment, the composite microphone boot can be formed using a double-shot injection molding process.
Abstract:
Systems, methods, and devices are provided in which photodetectors disposed throughout a display are used to control the display brightness. The photodetectors are to be used for ambient light sensing, proximity sensing, or to compensate for aging OLEDs. In some embodiments, photodiodes are fabricated with OLEDs during the TFT fabrication process. In some embodiments, the photodetectors may be disposed throughout the display in zones containing OLEDs. The photodetectors are used to control the display brightness and color for the OLEDs in areas around each photodetector based on ambient light, aging, and/or nearby objects. A controller makes driving strength adjustments to the OLEDs in each zone independent of other zones. Photodetectors disposed throughout the display may improve proximity sensing and provide additional functionality to the device.
Abstract:
Methods for forming PCBs that can be used in a portable computing device are described. The PCBs can be installed in the portable computing device in a bent configuration. In a particular embodiment, a contiguously formed PCB can be shaped with two large regions connected a thin connector portion. The thin connector portion can connect components one each of the two large regions and can be used in lieu of a flex connector. In one embodiment, the PCB can be formed from multiple layers including trace and substrate layers. The trace and substrate layer can be adjusted to affect the stiffness of the PCB in various regions, such as to allow the PCB to hold a bent configuration after a bending moment is applied.