Abstract:
Various systems and method for acoustic monitoring of smelting furnaces and similar devices are disclosed. Acoustic sensors (and optionally other sensors) are mounted to the furnace. Acoustic emission events generated in the furnace are analyzed to identify conditions that exceed one or more thresholds. The location of acoustic emissions may be identified and reported. Output signals may be generated in response to acoustic emissions. The location of acoustic emissions may be used to identify the location of potential failures in the furnace.
Abstract:
A process for preparing solid slag granules from a molten slag composition comprises: (a) providing the molten slag composition; (b) converting the molten slag composition into the solid slag granules in a dispersion apparatus; and (c) sorting the solid slag granules by shape in a separator to produce a plurality of fractions having different sphericities. Granular slag products comprise one or more fractions of solid slag granules produced by the process, and include proppants, roofing granules, catalyst supports, which may be porous or non-porous, and coated or uncoated.
Abstract:
A reactor comprises an outer sidewall and a bottom wall enclosing a hollow chamber comprising a lower fluidized bed zone and an upper freeboard zone. A plurality of inlets is provided for injecting at least one fluidizing medium into the fluidized bed zone and creating a swirling flow. At least one feed inlet communicates with the fluidized bed zone; and at least one product outlet is provided for removing a product from the chamber, the outlet(s) communicating with either the fluidized bed zone or the freeboard zone. The reactor has at least one internal barrier located inside the hollow chamber, and at least partly located in the fluidized bed zone. The internal barrier(s) have at least one opening within the fluidized bed zone, such as an underflow opening, to permit internal recirculation of material from the product zone to the feed zone, thereby simplifying reactor structure.
Abstract:
A highly flexible sealing arrangement designed to seal high-temperature furnace ports, particularly the electrode port of an electric furnace. The seal comprises an annular support member fixed to a flexible sealing member and employs the use of a garter spring to uniformly apply the desired amount of seal compression. The arrangement and flexibility of the sealing member allows the seal to adapt itself to the wide range of operating and upset conditions that typically exist for a furnace electrode seal. Frictional wear on the seal may be greatly reduced as the design inherently allows for a much lower amount of seal compression to be applied, furthermore, the seal is able to move axially which can significantly reduce wear caused by electrode regulation.
Abstract:
A chill mold is used to cool molten material to form a casting. A support holds the chill mold so that a bottom of the chill mold is elevated. A baffle is arranged to divert a generally horizontal flow of cooling air upwardly to impinge the bottom of the chill mold. A plurality of chill molds may be aligned generally in a row, and at least one fan may be arranged at an end of the row to direct the flow of cooling air underneath the chill molds. The size and the vertical position of the baffles may be varied along the row, so as to generally equalize convective cooling rates among the chill molds in the row.
Abstract:
A burner is provided for a pulverous feed material. The burner has a structure that integrates the burner with a reaction vessel, and has an opening that communicates with the interior of the reaction vessel. The burner also has a gas supply channel to supply reaction gas through the opening into the reaction vessel, and a feed supply for delivering pulverous material to the reaction vessel. The burner also has a fluidic control system having at least one port capable of directing a stream of fluid at an angle to the direction of flow of the reaction gas so as to modify the flow of the reaction gas. In addition, components are provided to modify the swirl intensity and turbulence intensity of the reaction gas independently of the exit velocity.
Abstract:
A furnace is provided suitable for metallurgical processes, comprising at least one section comprised of refractory bricks with an outer shell plate adjacent to the refractory bricks, including exterior bricks whose external faces adjacent the shell plate define gaseous media cooling channels extending along the exterior of the refractory bricks between them and the shell plate. The furnace further comprises cooling plates within the cooling channels and joints between the successive courses of bricks. Advantageously, the conductivity of the cooling plates is at least 5 times the conductivity of the refractory lining into which it is inserted. Suitable materials include copper and copper-based alloys, brasses, bronzes, cast irons, aluminum alloys, silver, high-temperature steels, refractory metals and their alloys, graphite, silicon carbide, and aluminum nitride.
Abstract:
A system and method for assessing deterioration of a metallurgical runner using acoustic emissions. The system may be referred to as an acoustic emission runner integrity system (AERIS). The system comprises acoustic emission sensors mounted on the runner. At least some of the sensors can detect acoustic emission signals in the runner. The sensors may be able to emit acoustic emission signals into the runner. The sensors are in communication with a controller. The controller is configured to one or more of identify and monitor deterioration of the runner based on the acoustic emission signals of the sensors. The method comprises affixing AE sensors to the runner, detecting AE signals with the sensors, and assessing deterioration of the runner based on the AE signals of the sensors.
Abstract:
A system measures parameters of the electricity drawn by an arc furnace and, based on an analysis of the parameters, provides indicators of whether arc coverage has been optimized. Factors related to optimization of arc coverage include electrode position, charge level, slag level and slag behaviour. More specifically, such indicators of whether arc coverage has been optimized may be used when determining a position for the electrode such that, to an extent possible, a stable arc cavity is maintained and an open arc condition is avoided. Conveniently, by avoiding open arc conditions, the internal linings of the furnace walls and roof may be protected from excessive wear and tear.
Abstract:
A system and method for dry ablation beneficiation of ore. The system comprises a nozzle to emit an air stream, and a feeder to provide ore particles for entraining in the air stream and colliding. The ore comprises gangue grains bound together with a cementing material. The cementing material comprises a desired material. The collisions are controlled to help preferentially break the cementing material over breaking the bonds holding a gangue grain together. The system also comprises a classifier to separate broken cementing material from the remaining material (which includes gangue grains) based on size. The method comprises entraining the ore particles in an air stream and colliding to preferentially break the cementing material. The ore particles may be collided with each other or a surface. The broken cementing materials are then separated from the remaining materials (which includes gangue grains). The enriched ore is the separated cementing material.