Abstract:
A method for controlling a refrigerator having a direction control valve drives a refrigerating fan for a predetermined time when a refrigerant passage is converted to make a refrigerant from a condenser firstly pass a refrigerating evaporator, and enhances a cooling efficiency by applying a residual cool air of the refrigerating evaporator to a refrigerating compartment, after the refrigerating compartment reaches a steady state in a refrigerator having a refrigerating evaporator embodied as an intercooler evaporator. The method includes the steps of: (a) determining whether a refrigerating compartment temperature sensed by a refrigerating compartment temperature sensor reaches a refrigerating compartment set temperature to determine a steady state of a refrigerating compartment; (b) if it is determined that the steady state of the refrigerating compartment in the step (a), switching a direction control valve, and allowing a refrigerant to firstly pass a refrigerating evaporator; (c) if the direction control valve is switched in the step (b), driving a refrigerating fan for a predetermined time simultaneously driving a freezing fan; and (d) if the refrigerating fan is driven for the predetermined time in the step (c), stopping the refrigerating fan.
Abstract:
A method for controlling opening/closing of cool air discharge ports of a refrigerator is disclosed. The refrigerator has a device for opening/closing the ports. The device has a member for opening/closing the ports, and a motor for driving the member. A microcomputer measures temperatures at positions in a cooling compartment, and calculates a difference between the measured temperatures. When the difference is more than a predetermined value, the motor is driven so that the member repeats opening and closing of the ports. Then, the circulation effect of the cool air in the cooling compartment is enhanced, and the temperature in the cooling compartment maintained uniform.
Abstract:
A Brushless Direct Current (BLDC) motor starting method and device are provided. With the method and/or device, startup noise and vibration and startup failure rate can be reduced using a constant low-speed startup scheme when the BLDC motor is in startup mode. Additionally, Pulse Width Modulation (PWM) duty is also maintained at low level when the BLDC motor starts up, thereby preventing excessive current from occurring due to desynchronization of the motor at startup, so that it is possible to optimize specifications of an inverter in the BLDC motor. The BLDC motor starts up with a synchronous speed and a PWM duty of a rotor of the BLDC motor being kept constant, and the BLDC motor switches to sensorless mode if a position of the rotor is detected a predetermined number of times or more during a specific time period.
Abstract:
A BLDC motor phase commutation method is provided, which can correctly detect phase commutation timing and position detection timing of a BLDC motor in a compressor to stabilize rotation and RPM of the compressor, thereby minimizing noise and vibration. When the BLDC motor rotates through a mechanical angle corresponding to one period, the BLDC motor operates according to a first scheme in which operation of the BLDC motor in the first phase commutation section of a period is performed in the same manner as in the last phase commutation section of a period immediately prior to the period. After the BLDC motor switches to sensorless mode, the BLDC motor operates according to a third scheme in which the first phase commutation section of a period has a time interval equal to the average of time intervals of first phase commutation sections of periods prior to the period.
Abstract:
A refrigerator having a shutting device for preventing flow of air between an evaporator and a fresh food compartment is disclosed. The shutting device has a shutting member for shutting a space that the evaporator is installed against a cooling compartment, and a motor for driving the shutting member. During a defrosting operation and when the door is open, cool air discharge ports are closed by the shutting member. Thus, the temperature rise of the fresh food compartment due to the heat from a defrosting heater, and the loss of cool air and the generation of frost on the evaporator due to the opening of the door are prevented.
Abstract:
Disclosed herein are a device and method of driving a brushless DC (BLDC) motor. The device to drive the BLDC motor includes a rectifier which converts an AC voltage into a DC voltage; an inverter which converts the DC voltage into an AC voltage by switching a plurality of power switches and supplies the converted AC voltage to the BLDC motor; and a microcomputer which detects a position of a rotor before a terminal voltage of the BLDC motor exceeds 1/2 of an output voltage of the rectifier and performs phase switching, when a driving speed of the BLDC motor reaches a rated speed.
Abstract:
A method of controlling the speed of a BLDC (brushless direct current) motor and a method of controlling the cooling speed of a refrigerator using the same. A method of controlling the speed of a BLDC motor includes: inputting a driving signal having a predetermined reference current applying angle to the motor to achieve a predetermined reference speed; measuring a rotating speed of the motor; increasing a current applying angle of the driving signal if the measured rotating speed does not reach the reference speed and the driving signal has reached a maximum input of the motor; and inputting the driving signal having the increased current applying angle to the BLDC motor.
Abstract:
A refrigerator having freezing and refrigerating compartments and a refrigerating H.M. cycle and a control method therefor, comprises a compressor for compressing refrigerant, a condenser for condensing refrigerant, a capillary tube for expanding refrigerant, a first evaporator mounted in the refrigerating compartment and a second evaporator mounted in series to the first evaporator in the freezing compartment; the freezing and refrigerating compartments divided from each other to be cooled, separately, a first fan mounted in the refrigerating compartment to circulate air passing through the first evaporator, a second fan mounted in the freezing compartment to circulate air passing through the second evaporator, and a control portion for controlling the operation of the compressor and the freezing and refrigerating fans, thereby performing both compartments to be maintained at the constant temperature.