Abstract:
Disclosed is an electrolyte for a secondary battery comprising an electrolyte salt and an electrolyte solvent, the electrolyte further comprising both a cyclic diester compound and a sulfinyl group-containing compound. Also, disclosed is an electrode having a solid electrolyte interface (SEI) film partially or totally formed on a surface thereof, the SEI film being formed by electrical reduction of the above compounds. Further, a secondary battery comprising the electrolyte and/or the electrode is disclosed.
Abstract:
An inductance is provided. The inductance includes a metal core, a coil and a soft-magnetic colloid element. The coil is wound around the metal core. The soft-magnetic colloid element surrounds the coil.
Abstract:
Disclosed is an additive for a non-aqueous electrolyte, which is a compound having a double bond and at least two cyano groups, the two cyano groups being in a trans-formation to the double bond. Also, a non-aqueous electrolyte comprising the additive and an electrochemical device comprising the non-aqueous electrolyte are also disclosed. Further, an electrode comprising the cyano group-containing compound and an electrochemical device comprising the electrode are disclosed.
Abstract:
Disclosed is an additive for a non-aqueous electrolyte, which is a compound having a double bond and at least two cyano groups, the two cyano groups being in a trans-formation to the double bond. Also, a non-aqueous electrolyte comprising the additive and an electrochemical device comprising the non-aqueous electrolyte are also disclosed. Further, an electrode comprising the cyano group-containing compound and an electrochemical device comprising the electrode are disclosed.
Abstract:
A lithium secondary battery has an anode, a cathode, a separator between the anode and the cathode and a non-aqueous electrolyte. The non-aqueous electrolyte includes a lithium salt; and a non-linear carbonate-based mixed organic solvent in which (a) a cyclic carbonate compound, and (b) a propionate-based compound are mixed at a volume ratio (a:b) in the range from about 10:90 to about 70:30. The cathode has a capacity density in the range from about 3.5 to about 5.5 mAh/cm2 and a porosity in the range from about 18 to about 35%. This battery may be manufactured as a high-loading lithium secondary battery.
Abstract:
Disclosed is a lithium secondary battery, which is low in capacity loss after overdischarge, having excellent capacity restorability after overdischarge and shows an effect of preventing a battery from swelling at a high temperature.
Abstract:
Disclosed is a non-aqueous electrolyte comprising: an acrylate compound; a sulfinyl group-containing compound; an organic solvent; and an electrolyte salt. Also, disclosed is an electrode comprising a coating layer formed partially or totally on a surface thereof, the coating layer comprising: (i) a reduced form of an acrylate compound; and (ii) a reduced form of a sulfinyl group-containing compound. Further, disclosed is an electrochemical device comprising a cathode, an anode and a non-aqueous electrolyte, wherein (i) the non-aqueous electrolyte is the aforementioned non-aqueous electrolyte; and/or (ii) the cathode and/or the anode is the aforementioned electrode.
Abstract:
A lithium secondary battery comprises an anode capable of intercalating or disintercalating lithium ions, a cathode configured with a lithium-containing oxide, and a nonaqueous electrolyte solution. The lithium-containing oxide comprises a lithium nickel based oxide. The nonaqueous electrolyte solution comprises vinyl ethylene carbonate (VEC) and a mono-nitrile compound. This lithium secondary battery solves the deterioration of charge/discharge cycle characteristics caused by a lithium nickel based oxide used for a cathode, and also controls the decomposition reaction of electrolyte to solve the swelling phenomenon even though the battery is stored at a high temperature or charged/discharged in a fully-charged state, thereby improving high-temperature life characteristics.
Abstract:
A system for estimating long term characteristics of a battery includes a learning data input unit for receiving initial characteristic learning data and long term characteristic learning data of a battery to be a learning object; a measurement data input unit for receiving initial characteristic measurement data of a battery to be an object for estimation of long term characteristics; and an artificial neural network operation unit for receiving the initial characteristic learning data and the long term characteristic learning data from the learning data input unit to allow learning of an artificial neural network, receiving the initial characteristic measurement data from the measurement data input unit and applying the learned artificial neural network thereto, and thus calculating long term characteristic estimation data from the initial characteristic measurement data of the battery and outputting the long term characteristic estimation data.
Abstract:
Disclosed is an electrolyte for a secondary battery comprising an electrolyte salt and an electrolyte solvent, the electrolyte further comprising both a cyclic diester compound and a sulfinyl group-containing compound. Also, disclosed is an electrode having a solid electrolyte interface (SEI) film partially or totally formed on a surface thereof, the SEI film being formed by electrical reduction of the above compounds. Further, a secondary battery comprising the electrolyte and/or the electrode is disclosed.