Abstract:
Methods and devices for improving biofixation of implantable vascular devices are provided. The methods and devices improve biofixation of implantable vascular devices by providing one or more thrombus-eliminating agents at a treatment site before and/or during and/or after vascular device implantation.
Abstract:
A stent graft system and method of use includes a stent graft for fixation at an attachment site with graft material defining at least one opening having an opening perimeter; a support attached to the graft material; a guide rail attached around the opening perimeter; and a helical anchor having a plurality of coils with a point at one end. The plurality of coils are rotatable around the guide rail to cause the pointed end of the coils to penetrate the graft material and the adjacent tissue in contact with the stent graft to sew the stent graft to the attachment site.
Abstract:
A method of securing a prosthesis placed at a desired site in a passageway of a human body comprises delivering a fastener having a proximal piercing end portion and a distal piercing end portion to a site where a prosthesis having a tubular wall has been placed in the passageway, which has a wall, advancing the proximal piercing end portion beyond the prosthesis, penetrating the proximal piercing end portion into the wall of the passageway without passing the proximal piercing end portion through the tubular wall of the prosthesis, and passing the distal piercing end portion through the tubular wall of the prosthesis and into the wall of the passageway. One surgical fastener delivery apparatus for delivering a surgical fastener to a target site comprises a support having a first end, a second end, and a longitudinal axis and being adapted for placement in a passageway in a human body. A surgical fastener having a first piercing end portion, a second piercing end portion and a central portion extending therebetween and having a longitudinal axis is releasably mounted to the support with the central portion longitudinal axis generally parallel to the support longitudinal axis.
Abstract:
A stent graft and method for positioning and deploying the stent graft within a vessel system that includes a main vessel and a branch vessel emanating from the main vessel. The stent graft includes a tubular shaped main body formed from graft material, a branch opening (aperture) (ring) in the graft material of the main body whose position can be varied. A tubular shaped branch graft can extend from the main graft. A side wall of the main body may be configured as a series of connected annular corrugations or pleats, and coupled to the main body to define and provide variable positioning of its branch opening (aperture).
Abstract:
A stent graft and method for positioning and deploying the stent graft within a vessel system that includes a main vessel and a branch vessel emanating from the main vessel. The stent graft includes a tubular shaped main body formed from graft material, a branch opening (aperture)(ring) in the graft material of the main body whose position can be varied. A tubular shaped branch graft can extend from the main graft. A side wall of the main body may be configured as a series of connected annular corrugations or pleats, and coupled to the main body to define and provide variable positioning of its branch opening (aperture).
Abstract:
A stent graft includes at least one aperture extending through the main body thereof, into which an extension portion may be deployed for positioning within an adjacent branch flow lumen. The extension portions include self biasing features, wherein the extension is biased into engagement with the main body to seal the interface thereof. Additionally, the extension portion may be configured for tortuous or deviated anatomy, to enable sealing of the extension portion with the body while extending the extension portion in a substantially non-radial direction from the main body.
Abstract:
Universal modular stented graft assemblies are assembled, on site, and often in a patient's parent artery, from at least two components; a first component and a second component. The first and second components each include a window, or fenestration. The second component couples with the first component by fitting at least partially in the first component to form the universal modular stent graft assembly with an adjustable collateral opening. As the first and second components are assembled, the first and second components are adjusted relative to each other so that the first and second component windows overlap to form a collateral opening whose size is selectable, depending on the overlap, with the desired position and dimensions in the universal modular stent graft assembly.
Abstract:
A method of securing a prosthesis placed at a desired site in a passageway of a human body comprises delivering a fastener having a proximal piercing end portion and a distal piercing end portion to a site where a prosthesis having a tubular wall has been placed in the passageway, which has a wall, advancing the proximal piercing end portion beyond the prosthesis, penetrating the proximal piercing end portion into the wall of the passageway without passing the proximal piercing end portion through the tubular wall of the prosthesis, and passing the distal piercing end portion through the tubular wall of the prosthesis and into the wall of the passageway. One surgical fastener delivery apparatus for delivering a surgical fastener to a target site comprises a support having a first end, a second end, and a longitudinal axis and being adapted for placement in a passageway in a human body. A surgical fastener having a first piercing end portion, a second piercing end portion and a central portion extending therebetween and having a longitudinal axis is releasably mounted to the support with the central portion longitudinal axis generally parallel to the support longitudinal axis.