Abstract:
A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
Abstract:
Method and systems of treating a patient with at least one of a myocardial infarction, a stroke, and a pulmonary embolism include providing a stimulator coupled to at least one electrode and a catheter, configuring one or more stimulation parameters to treat at least one of a myocardial infarction, a stroke, and a pulmonary embolism, programming the stimulator with the one or more stimulation parameters, delivering with the stimulator via the catheter at least one drug to at least one tissue in accordance with the one or more stimulation parameters, and limiting perfusion of the at least one tissue by delivering electrical stimulation with the stimulator via the at least one electrode to the at least one tissue.
Abstract:
Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
Abstract:
Treatment of hypertension includes implantation of the discharge portion(s) of a catheter and/or electrical stimulation electrode(s) adjacent the tissue(s) to be stimulated. Stimulation pulses, i.e., drug infusion pulses and/or electrical pulses, are supplied by one or more implanted stimulators, through the catheter and possibly also a lead, tunneled subcutaneously between the stimulator and stimulation site. A microstimulator(s) may also/instead deliver electrical stimulation pulses. Stimulation sites include the carotid sinus and carotid body, among other locations. Treatments include drugs used for acute and/or chronic treatment of hypertension. In a number of embodiments, a need for or response to treatment is sensed, and the electrical and/or infusion pulses adjusted accordingly.
Abstract:
An implantable lead having at least one electrode contact at or near its distal end prevents undesirable movement of the electrode contact from its initial implant location. One embodiment relates to a spinal cord stimulation (SCS) lead. A balloon may be positioned on the electrode lead array. The balloon is filled with air, liquid or a compliant material. When inflated, the balloon stabilizes the lead with respect to the spinal cord and holds the lead in place. The pressure of the balloon is monitored or otherwise controlled during the filling process in order to determine at what point the filling process should be discontinued. An elastic aspect of the balloon serves as a contained relief valve to limit the pressure the balloon may place on the surrounding tissues when the epidural space is constrained.
Abstract:
In a rate responsive pacemaker, a physiological sensor is used to sense the physiological needs of the patient's heart and to control both the pacing rate and the A-V interval accordingly. A first adjustment means triggers the timing circuitry to adjust the stimulation rate to a slightly sub-optimal value of cardiac output. A second adjustment means adjusts the A-V interval until hemodynamics are optimized according to the physiological sensor. The improvement in hemodynamics due to the A-V adjustment allows a further decrease in the stimulation rate by the first adjustment means, thereby conserving the limited battery supply.
Abstract:
A programming system for selecting an electrode configuration for use in a medical electrical stimulator coupled to an electrode array. A programmer is configured for providing a set of electrode configurations for the electrode array, automatically testing a first portion of the set of electrode configurations in a first order, allowing the selection of one or more of the tested electrode configurations, determining whether a suitable number of electrode configurations from among the first portion have been selected within a predefined interval, and automatically testing a second portion of the set of electrode configurations in a second order if the suitable number of electrode configurations from among the first portion are not selected within the predefined interval. The programmer may further allow the selection of the tested electrode configurations, and adjusting parameters during the testing, wherein the adjusting is controllably shared in parallel between a clinician and a patient.
Abstract:
A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
Abstract:
Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 100 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
Abstract:
Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.