摘要:
A method of magnifying a digital image based on an edge map. The image has many original pixels, with each pixel having a level, and the locations of the pixels having a resolution. The method to magnify the image includes the steps of producing an edge map with many boundaries from the digital image, projecting the edge map onto the digital image, generating one or more additional pixels in locations among the original pixels by manipulating the levels of one or more original pixels without crossing any boundaries set by the edge map, and expanding the distances between the pixels so that the resolution of the locations of the pixels becomes the same as the original pixels. In another preferred embodiment, the original digital image is enlarged to the size of the magnified image by extending proportionally the locations of the original pixels. Then the edge map is produced and projected onto the enlarged image to generate additional pixels. After the step of generating, the resolution of the locations of the pixels becomes the same as the original pixels.
摘要:
A method of magnifying a digital image based on an edge map. The image has many original pixels, with each pixel having a level, and the locations of the pixels having a resolution. The method to magnify the image includes the steps of producing an edge map with many boundaries from the digital image, projecting the edge map onto the digital image, generating one or more additional pixels in locations among the original pixels by manipulating the levels of one or more original pixels without crossing any boundaries set by the edge map, and expanding the distances between the pixels so that the resolution of the locations of the pixels becomes the same as the original pixels. In another preferred embodiment, the original digital image is enlarged to the size of the magnified image by extending proportionally the locations of the original pixels. Then the edge map is produced and projected onto the enlarged image to generate additional pixels. After the step of generating, the resolution of the locations of the pixels becomes the same as the original pixels.
摘要:
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.
摘要:
As set forth herein, a computer-implemented method facilitates pre-analyzing an image and automatically suggesting to the user the most suitable regions within an image for text-based personalization. Image regions that are spatially smooth and regions with existing text (e.g. signage, banners, etc.) are primary candidates for personalization. This gives rise to two sets of corresponding algorithms: one for identifying smooth areas, and one for locating text regions. Smooth regions are found by dividing the image into blocks and applying an iterative combining strategy, and those regions satisfying certain spatial properties (e.g. size, position, shape of the boundary) are retained as promising candidates. In one embodiment, connected component analysis is performed on the image for locating text regions. Finally, based on the smooth and text regions found in the image, several alternative approaches are described herein to derive an overall metric for “suitability for personalization.”
摘要:
As set forth herein, systems and methods facilitate providing an efficient edge-detection and closed-contour based approach for finding text in natural scenes such as photographic images, digital, and/or electronic images, and the like. Edge information (e.g., edges of structures or objects in the images) is obtained via an edge detection technique. Edges from text characters form closed contours even in the presence of reasonable levels of noise. Closed contour linking and candidate text line formation are two additional features of the described approach. A candidate text line classifier is applied to further screen out false-positive text identifications. Candidate text regions for placement of text in the natural scene of the electronic image are highlighted and presented to a user.
摘要:
An electronic database for image interpolation is generated by a computer. The computer generates a low-resolution image from a training image, a plurality of representative vectors from the low-resolution image, and a plurality of interpolation filters corresponding to each of the representative vectors. The interpolation filters and the representative vectors are generated off-line and can be used to perform image interpolation on an image other than the training image. The database can be stored in a device such as computer or a printer.
摘要:
An electronic database for image interpolation is generated by a computer. The computer generates a low-resolution image from a training image, a plurality of representative vectors from the low-resolution image, and a plurality of interpolation filters corresponding to each of the representative vectors. The interpolation filters and the representative vectors are generated off-line and can be used to perform image interpolation on an image other than the training image. The database can be stored in a device such as computer or a printer.
摘要:
As set forth herein, systems and methods facilitate providing an efficient edge-detection and closed-contour based approach for finding text in natural scenes such as photographic images, digital, and/or electronic images, and the like. Edge information (e.g., edges of structures or objects in the images) is obtained via an edge detection technique. Edges from text characters form closed contours even in the presence of reasonable levels of noise. Closed contour linking and candidate text line formation are two additional features of the described approach. A candidate text line classifier is applied to further screen out false-positive text identifications. Candidate text regions for placement of text in the natural scene of the electronic image are highlighted and presented to a user.
摘要:
As set forth herein, a computer-implemented method facilitates replacing text on cylindrical or curved surfaces in images. For instance, the user is first asked to perform a multi-click selection of a polygon to bound the text. A triangulation scheme is carried out to identify the pixels. Segmentation and erasing algorithms are then applied. The ellipses are estimated accurately through constrained least squares fitting. A 3D framework for rendering the text, including the central projection pinhole camera model and specification of the cylindrical object, is generated. These parameters are jointly estimated from the fitted ellipses as well as the two vertical edges of the cylinder. The personalized text is wrapped around the cylinder and subsequently rendered.
摘要:
As set forth herein, a computer-implemented method is employed to place personalized text into an image. A location and region within the image is determined where the text is to be placed. The 3D geometry of the surface is estimated proximate to the location where the text is to be placed. A personalized text string is received. The personalized text string is incorporated into the image to appear as if it is rendered onto the surface or object according to the estimated 3D geometry.