Abstract:
A power conversion system and a power conversion method thereof. The power conversion system includes a driving unit, a control unit, a first direct current (DC) power supply circuit and a second DC power supply circuit. The control unit controls the driving unit to drive a load. The first DC power supply circuit converts an alternating current (AC) power into a first DC power outputted to the driving unit, and the second DC power supply circuit converts the AC power into a second DC power outputted to the control unit.
Abstract:
A solar-infrared-rays sensing garden lamp is provided. It mainly comprises a garden lamp body with a control apparatus set inside. The control apparatus charges a power supply via the solar energy in the daytime, and provides power via the power supply in the nighttime. Therefore a infrared rays sensing circuit set on the garden lamp body at a surface thereof can sense omnibearingly in the nighttime. When the infrared rays sensing circuit senses unusual situation, it drives a corresponding lighting unit to illuminate and transmits a triggered signal to the voice control unit for driving a speaker and giving off sounds.
Abstract:
A sample-and-hold apparatus and an operating method thereof are provided. The sample-and-hold apparatus includes a sampling amplifier, a transistor, a first switch, a second switch, a sampling capacitor, and a drain-charge unit. A first input terminal of the sampling amplifier receives an input signal. A first-terminal of the transistor is coupled to a first voltage. The first switch is coupled between an output terminal of the sampling amplifier and a gate of the transistor. The first and second terminals of the second switch are coupled to a second terminal of the transistor and a second input terminal of the sampling amplifier, respectively. The first and second terminals of the sampling capacitor are coupled to the gate of the transistor and a reference voltage. The drain-charge unit for draining/providing charges has first and second terminals coupled to the second terminal of the second switch and a second voltage, respectively.
Abstract:
A man-made magnetic material presenting magnetic response at different frequencies is made from non-magnetic conductive metal and formed in a four-way symmetrical structure consisting of four L-shaped units. A plurality of the four-way symmetrical structures is arranged to form a periodic array. The four-way symmetrical structure is formed at a size much smaller than the wavelength of incident light. Hence it is treated as an effective uniform medium in terms of the incident light. Such a novel planar structure can generate magnetic response in a wide range of bandwidth. The frequency band capable of generating the magnetic response also can be regulated and altered through control of the structural size.
Abstract:
A dynamic biasing amplifier apparatus, and dynamic biasing apparatus, and method are disclosed. The dynamic biasing amplifier apparatus includes a comparator unit, a dynamic bias generator unit, and an amplifier unit. The amplifier unit receives an input signal and output an output signal based on at least a bias voltage. The comparator unit compares the positive and negative input signals of the amplifier unit. The dynamic bias generator unit generates and adjusts the bias voltage in accordance with the comparing result of the comparator unit. Therefore, the dynamic bias generator unit controls the amplifier unit to operate in a low static current mode when the input signal is in steady state; and the dynamic bias generator unit controls the amplifier unit to operate in a high dynamic current mode when the input signal is in transition state.
Abstract:
A voltage conversion device has a non-linear gain, for converting analog voltage provided by an analog voltage source. The voltage conversion device comprises a gain decision module, a voltage selection module, and a voltage output module. The gain decision module comprises an analog to digital (A/D) converter and a gain selector. The A/D converter is used for converting analog voltage provided by the analog voltage source into digital signals. The gain selector is used for determining a gain. The voltage selection module is used for outputting a direct-current (DC) voltage. The voltage output module has a first input end coupled to the gain selector, an output end coupled to the gain selector, and a second input end coupled to the voltage selection module, for outputting an amplified result of the DC voltage outputted from the voltage selection module.
Abstract:
A method for reducing phase lock time and jittering and a phase lock loop (PLL) using the same adapted for PLL including a charge pump (CP) which includes a pull-up and a pull-down networks used for controlling output voltage of the CP. The output voltage is used for controlling frequency and phase of an output signal of the PLL. The method includes: receiving a reference and a feedback signals; setting the driving capabilities of the pull-up and the pull-down networks to a first driving capability when the phase difference between the reference and the feedback signals is greater than a predetermined value; setting the driving capabilities of the pull-up and the pull-down networks to a second driving capability when the phase difference between the reference and the feedback signals is smaller than the predetermined value, wherein the first driving capability is greater than the second driving capability.
Abstract:
An intercom is disclosed to include a housing houses a transmitter receiver control circuit board, and a hand-driven power generator unit, which has a speed-change gear set, a crank handle pivoted to the housing for operation by a person to rotate the speed-change gear set, and a dynamo coupled to the speed-change gear set and driven to generate electricity for the transmitter receiver control circuit board upon rotation of the speed-change gear set by a person.
Abstract:
A voltage buffer and the source driver thereof are disclosed. The above-mentioned voltage buffer includes an operational amplifier and an overdriving unit, wherein the operational amplifier outputs an output voltage. The overdriving unit is coupled between an input voltage and the operational amplifier for comparing the input voltage with the output voltage and outputting an overdriving voltage to the positive input terminal of the operational amplifier. Herein if the input voltage is greater than the output voltage, the overdriving voltage is greater than the input voltage; if the input voltage is less than the output voltage, the overdriving voltage is less than the input voltage; if the input voltage is equal to the output voltage, the overdriving voltage is equal to the input voltage.
Abstract:
A water sealing structure used in a lamp using a crank handle-operated dynamo to generate electricity is disclosed to have a flexible rubber packing strip fastened to the housing of the lamp to seal the gap between top and bottom cover shells of the housing, a flexible rubber covering affixed to the housing and covered on a lampshade at the housing to seal the gap between the lampshade and the housing, a flexible rubber button covered on the power switch of the lamp to seal the gap between the power switch and the top cover shell of the housing, and a water sealing cap fastened to the bottom cover shell of the housing around the crank handle to seal the gap between the crank handle and the bottom cover shell.