Abstract:
A method for transmitting messages using an efficient communications link protocol over an air interface of a cellular communications system is disclosed. A frame in the protocol is divided into a plurality of sections including a header section and a data section. The header section contains a field which indicates what type of information is contained in the frame.
Abstract:
A method for transmitting messages using an efficient communications link protocol over an air interface of a cellular communications system is disclosed. A frame in the protocol is divided into a plurality of sections including a header section and a data section. The header section contains a field which indicates what type of information is contained in the frame.
Abstract:
A method for transmitting messages between mobile stations and a cellular switching system is disclosed which improves channel burst capacity by allowing information from two distinct layer 3 messages to be transmitted in a unique layer 2 frame carried within a channel burst. The end of a first layer 3 message and the beginning of a second layer 3 message is identified in an end of message field which is used to delimit the layer 3 message information contained in a subsequent data field.
Abstract:
A machine type device for deployment in a wireless network includes a processing circuit operable to generate an application layer message and a request including information identifying the machine type device as capable of using a particular protocol stack. After radio resources are setup between the machine type device and the base station controller, the processing circuit is further operable to transmit the application layer message and a local wireless network alias to a base station controller, the local wireless network alias indicating the machine type device is capable of using the particular protocol stack.
Abstract:
An MTC device activates an MTC service by first performing an MTC device attachment procedure to attach to a mobile communication network. After the MTC device is attached to the mobile communication network, the MTC device activates a packet data protocol context for the MTC device with the mobile communication network. After the packet data protocol context is activated, the MTC device activates an MTC service with an MTC server.
Abstract:
Two User Equipment (UE) operate in a Near Companion Mode (NCM), in which a monitoring UE (MUE) monitors an uplink transmission opportunity granted to its companion UE (CUE) on a shared uplink channel. If the CUE does not begin transmitting within a predetermined portion of its transmission opportunity, the MUE may utilize the transmission opportunity to transmit an uplink data packet. In one embodiment, where the CUE does not have data to transmit, it may transmit a predetermined pattern at the beginning of its transmission opportunity, to indicate to the MUE that the transmission opportunity is available. The MUE may transmit an NCM radio block using the entire symbol space associated with the last three of four bursts allocated to the CUE, or using a newly defined NCM format comprising four abbreviated bursts, using only a portion of the symbol space associated with the four bursts corresponding to the transmission opportunity allocated to the CUE.
Abstract:
In one aspect, the invention provides apparatuses and methods for wirelessly transmitting application data utilizing priority information for each radio link control (RLC) data block transmitted. Advantageously, the application data with a relatively high transmission priority is not substantially delayed by the transmission of application data with substantially lower transmission priorities.
Abstract:
A device type-dependent approach to access control is used to independently control network access by machine-type communication (MTC) and non-MTC devices. A plurality of access classes are defined for each device type. The base station selectively controls access to the network by each device type by sending an access control mask for each defined device type to the wireless terminals within the network.
Abstract:
The present invention is a method and system adapted to facilitate, between a mobile station (MS) and network, an indication of support for reduced time transmission interval (RTTI). The MS can provide a base station system (BSS) with an indication of its multislot capability within an access burst sent at the start of a contention based access. In another aspect, the MS can indicate support for a new Immediate Assignment message as the conventional Immediate Assignment message can only assign single timeslots. The present invention enables the Radio Access Network (RAN) to assign RTTI and more than one timeslot for GPRS/EDGE temporary block flows (TBFs) during an Access Grant Channel (AGCH) assignment. The method of the present invention can be implemented in a computer program product or distributed software adapted to be loaded into at least one or a plurality of memory locations and executed by at least one or a plurality of respective computer processors.
Abstract:
A method of transmitting a downlink, coding scheme CS-1 RLC/MAC control message from a BSS to an EGPRS MS (61), and receiving and detecting the CS-1 RLC/MAC control message in the MS. The BSS places in an MCS-1 radio block, a CS-1 RLC/MAC control block identical to a coding scheme CS-1 RLC/MAC control message excluding the MAC header octet. The BSS also places a coding scheme CS-4 stealing bit code word in the radio block using legacy stealing bit values and positions. The CPS field (26) of the block header (25) indicates that the radio block contains a CS-1 RLC/MAC control message. The MS receives the radio block and detects the coding scheme CS-4 stealing bit code word. In response, the MS interprets the received radio block header to identify the CPS field. The MS determines from the CPS field that a CS-1 RLC/MAC control block has been received.