Abstract:
A method of calibrating a printing system for positioning at least one printed image, the printing system includes a first image bearing surface, the method includes: a) forming a background pattern and at least three fiducials on the first image bearing surface, wherein the background pattern is larger than a first printed image and the at least three fiducials are within an area formed by the first printed image; b) transferring a portion of the first printed image to a second image bearing surface; c) measuring a first residual image on the first image bearing surface, wherein the first residual image is a portion of the background pattern and the at least three fiducials remaining on the first image bearing surface after the step of transferring; and, d) calculating at least one calibration parameter for the printing system based on the measuring of the first residual image.
Abstract:
A system and method are provided that employ an ink jet process to dispose a non-aqueous solid ink product on a flexible clear film layer as an image receiving substrate to create multi-layer tamper-evident closures including tape, wrapping, labeling, marking or sealing products, in which visual information is embedded. These processes provide manufacturers of the multi-layer tamper-evident closures ability to present variable image content in ways that would be difficult to counterfeit. The solid ink product undergoes easily observable image changes when it is twisted in a manner that creates a shear force between the layers.
Abstract:
A system and method are provided that employ an ink jet process to dispose a non-aqueous solid ink product on a flexible clear film layer as an image receiving substrate to create multi-layer tamper-evident closures including tape, wrapping, labeling, marking or sealing products, in which visual information is embedded. These processes provide manufacturers of the multi-layer tamper-evident closures an ability to present variable image content in ways that would be difficult to counterfeit. These processes provide manufacturers of the multi-layer tamper-evident closures a capability to coordinate the variable image content of the multi-layer tamper-evident closures with the images that are contained in the labeling or marking of a particular product's package. In this manner, presence of the multi-layer tamper-evident closure may be partially hidden as it may be designed to blend with background packaging images in a manner that does not disrupt an aesthetically-pleasing nature of the product package.
Abstract:
Document processing systems and duplex printing methods are presented in which side 1 to side 2 image on paper (IOP) magnification errors are mitigated by use different speeds for raster output scanner (ROS) for scanning images for different final print sides, and by selective use of electronic registration adjustment by adding or removing sub-pixels from the image data to compensate for ROS speed change overshoot or undershoot.
Abstract:
A dynamic positional shifting, in the process direction, of the images on the second print engine of a tandem machine printing system in order to increase the time (and number of prints) between skipped pitches. Although the photoreceptor belts of each print engine may be out-of-phase, the relative positions of their individual seam zones may be derived during cycle-up. A control procedure then optimizes the position and spacing of each image within each belt revolution of the second engine, while still maintaining the minimum inter-document zone (IDZ) length required for paper path feeding and registration, xerographic process controls, and finishing. Removing the constraints of fixed-dimension IDZ's, as well as being able to adjust spacing and length of individual images on the belt, allows for optimization of system productivity by either delaying or eliminating the need for a skipped pitch.
Abstract:
A calibration procedure for the synchronization of photoreceptor belt seams of tandem marking devices at system cycle-up. The procedure allows for images projected upon equivalent image panels relative to the belt seams of the tandem engines to be printed on the same sheet. The successive image panels on each belt are of relatively equal distance from the respective belt seams. Thus there is less frequency of the need to skip pitches in the printing operation to avoid either imaging on a belt seam or having the sheet arrive outside the input timing window for second engine sheet registration.
Abstract:
A dynamic positional shifting, in the process direction, of the images on the second print engine of a tandem machine printing system in order to increase the time (and number of prints) between skipped pitches. Although the photoreceptor belts of each print engine may be out-of-phase, the relative positions of their individual seam zones may be derived during cycle-up. A control procedure then optimizes the position and spacing of each image within each belt revolution of the second engine, while still maintaining the minimum inter-document zone (IDZ) length required for paper path feeding and registration, xerographic process controls, and finishing. Removing the constraints of fixed-dimension IDZ's, as well as being able to adjust spacing and length of individual images on the belt, allows for optimization of system productivity by either delaying or eliminating the need for a skipped pitch.
Abstract:
A calibration procedure for the synchronization of photoreceptor belt seams of tandem marking devices at system cycle-up. The procedure allows for images projected upon equivalent image panels relative to the belt seams of the tandem engines to be printed on the same sheet. The successive image panels on each belt are of relatively equal distance from the respective belt seams. Thus there is less frequency of the need to skip pitches in the printing operation to avoid either imaging on a belt seam or having the sheet arrive outside the input timing window for second engine sheet registration.