Abstract:
A power source circuit includes an inductor, a reservoir capacitor, and a switching control part that generates ON/OFF control signals to each of first and second switches. The first switch is connected between a first power voltage terminal and a first node to form a first current path between the first power voltage terminal and the first node in response to a driving signal of the switching control part. The second switch is connected between the first node and a second power voltage terminal to form a second current path between the first node and the second power voltage terminal in response to the driving signal. The inductor is connected to the first node to provide an average voltage between the first power voltage terminal and the second power voltage terminal. The capacitor is connected in parallel with the inductor to store the average voltage.
Abstract:
The present invention relates to a conditioner for a chemical-mechanical planarization (CMP) pad, which is used in a CMP process that is part of a semiconductor element manufacturing process, and more particularly, to a conditioner for a soft pad, and a method of manufacturing the same, wherein the conditioner can be used under CMP conditions using a slurry having a small amount of polishing particles, and/or a porous pad having comparatively low hardness and very high porosity.
Abstract:
A display apparatus includes a display panel, a transformer disposed under the display panel and including a primary winding and a secondary winding which are separated from each other and an insulating section between the primary winding and the secondary winding, and a lower housing member on which the display panel is placed and to which the transformer is fixed. A first region corresponding to the insulating section of the transformer is defined in the lower housing member, and at least one hole is disposed in the first region of the lower housing member.
Abstract:
A method of driving a light source includes; converting an externally supplied direct current voltage into a first alternating current voltage, boosting the first alternating current voltage to a second alternating current voltage having a higher voltage than the first alternating current voltage, turning on the light source using the second alternating current voltage, detecting an arc noise detection voltage by adding arc noise generated from a high voltage terminal of the light source and arc noise generated from a low voltage terminal of the light source, and blocking the high voltage from being provided to the light source based on the detected arc noise detection voltage.
Abstract:
A wafer drying method includes submerging a wafer in a cleaning solution in a dry chamber. An organic liquid vapor from an organic liquid is supplied into the dry chamber at a first volumetric supply rate to form an organic liquid layer on a surface of the cleaning solution, the organic liquid layer having at least a prescribed concentration of the organic liquid. The organic liquid vapor is supplied into the dry chamber at a second volumetric supply rate that is lower than the first volumetric supply rate. During and/or following the supplying of the organic liquid vapor into the dry chamber, at least a portion of the wafer is removed from the cleaning solution through the organic liquid layer.
Abstract:
A vacuum dryer and a method of drying a semiconductor device using the same are provided. In the present invention, a vacuum dryer using isopropyl alcohol vapor, including an outer bath, an inner bath, a main water supply line, a supplementary water supply line, an inner bath drain line, and an outer bath drain line, is provided. After cleaning the inside of the vacuum dryer, the inner bath is filled with the supplied deionized water and the deionized water is continuously overflowed. Then, the semiconductor substrate is loaded into the inner bath of the vacuum dryer to which the deionized is continuously overflowed. The loaded semiconductor substrate is dried by supplying the isopropyl alcohol vapor to the inner bath into which the semiconductor substrate is loaded.
Abstract:
A liquid crystal display includes a plurality of pixels arranged in a matrix, each pixel having a first sub-pixel electrode and a second sub-pixel electrode. A first thin film transistor is connected to the first sub-pixel electrode. A second thin film transistor is connected to the second sub-pixel electrode. A third thin film transistor is connected to the second sub-pixel electrode. A fourth thin film transistor is connected to a drain electrode of the third thin film transistor. A first gate line is connected to the first thin film transistor and the second thin film transistor. A data line is connected to the first thin film transistor and the second thin film transistor. A second gate line is connected to the third thin film transistor. A third gate line is connected to the fourth thin film transistor.
Abstract:
A display apparatus includes a display panel, a transformer disposed under the display panel and including a primary winding and a secondary winding which are separated from each other and an insulating section between the primary winding and the secondary winding, and a lower housing member on which the display panel is placed and to which the transformer is fixed. A first region corresponding to the insulating section of the transformer is defined in the lower housing member, and at least one hole is disposed in the first region of the lower housing member.
Abstract:
A power source circuit of a display apparatus includes a voltage divider, an operational amplifier, a first switch, a second switch, and a protector. The voltage divider generates a divided voltage between a first driving voltage and a ground voltage. The operational amplifier receives the divided voltage and outputs the divided voltage as a second driving voltage. The first switch is connected between a first supply voltage terminal to receive the first driving voltage and a common node. The second switch is connected between the common node and a second supply voltage terminal to receive the ground voltage. The protector is connected to the common node to limit a voltage output of the first supply voltage terminal in response to a voltage of the common node.
Abstract:
An arc discharge detecting circuit includes; a voltage dividing part which divides a driving voltage provided to a light source, a detecting part which includes a loop-shaped wiring spaced apart from the voltage dividing part and which detects a current corresponding to an arc discharge flowing through the voltage dividing part using a coupling capacitance generated between the loop-shaped wiring of the detecting part and a wiring of the voltage dividing part, and an output part connected to the detecting part to output a detection voltage corresponding to the arc discharge. Accordingly, the arc discharge detecting circuit may improve a sensitivity of detecting an arc discharge as a current source type using the coupling capacitors, a design may be simplified, and manufacturing costs may be decreased.