Abstract:
A method of forming a very small, i.e. microliter, finely detailed explosive train for the ignition of energetic munitions—which train is formed by ink jetting picoliter volume droplets of an explosive ink onto the substrate; which explosive ink is a pure liquid that will not clog the ink jet printer. The explosive ink being a solution composed of a secondary organic explosive solute, a polymeric binder solute, and a polar aprotic organic solvent. Where the ink jet printer is a commercial piezoelectric type, drop-on-demand, ink jet printer capable of precisely delivering the subject picoliter volume droplets. And, which printer is capable of heating said substrate to an elevated temperature to more rapidly evaporate the solvent, leaving the desired, finely detailed, efficacious, crystalline explosive train.
Abstract:
Disclosed is a preparation method of manufacturing a thermoelectric nanowire having a core/shell structure. The preparation method of thermoelectric nanowire includes preparing a substrate provided with an oxide layer formed thereon, and forming a Bi thin film on the oxide layer, heat treating a structure produced during forming the Bi thin film to induce compressive stress due to differences in coefficients of thermal expansion between the substrate, the oxide layer and the Bi thin film, to grow a Bi single crystal nanowire on the Bi thin film, and cooling the substrate of a structure on which the nanowire is grown to a low temperature, and sputtering a thermoelectric material on the Bi single crystal nanowire in a cooled state to manufacture a thermoelectric nanowire having a core/shell structure of Bi/thermoelectric material.
Abstract:
Provided is a liquid crystal display for improving side visibility by calculating a representative value for image data and correcting at least one of a storage voltage Vcst, a reference voltage Vref, and a lookup table LUT according to the calculated representative value. Further, a histogram analysis block is formed inside or outside a signal controller and corrects at least one of the storage voltage Vcst, the reference voltage Vref, and the lookup table LUT based on the histogram analysis block.
Abstract:
An electrical component includes an inkjet-printed graphene electrode. Graphene oxide flakes are deposited on a substrate in a graphene oxide ink using an inkjet printer. The deposited graphene oxide is thermally reduced to graphene. The electrical properties of the electrode are comparable to those of electrodes made using activated carbon, carbon nanotubes or graphene made by other methods. The electrical properties of the graphene electrodes may be tailored by adding nanoparticles of other materials to the ink to serve as conductivity enhancers, spacers, or to confer pseudocapacitance. Inkjet-printing can be used to make graphene electrodes of a desired thickness in preselected patterns. Inkjet printing can be used to make highly-transparent graphene electrodes. Inkjet-printed graphene electrodes may be used to fabricate double-layer capacitors that store energy by nanoscale charge separation at the electrode-electrolyte interface (i.e., “supercapacitors”).
Abstract:
A novel method of manufacturing a hydrogen sensor is disclosed. The method includes the steps of forming a thin film made of a transition metal or an alloy thereof on a surface of an elastic substrate, and forming a plurality of nanogaps in the thin film formed on the surface of the elastic substrate by applying a tensile force to the elastic substrate. The nanogaps are formed as the thin film is stretched in a direction in which the tensile force acts while being contracted in a direction perpendicular to the direction in which the tensile force acts when the tensile force is applied, and is contracted again in the direction in which the tensile force is released while being stretched again in the direction perpendicular to the direction in which the tensile force is released when the tensile force is released.
Abstract:
A content share request terminal and a mobile communication terminal may transmit description information for sharing content according to a Digital Living Network Alliance (DLNA) scheme using a mobile communication network. Therefore, the content share request terminal and the mobile communication terminal may share content without performing a discovery procedure in the DLNA scheme.
Abstract:
A fuse circuit includes a control signal generation unit configured to generate a control signal that is enabled after a moment when a power-up signal is enabled, a potential control unit configured to control potentials of both ends of a fuse in response to the control signal, and a fuse output unit configured to be initialized in response to the power-up signal and output a fuse signal in response to whether the fuse is cut or not.
Abstract:
A method for compensating data for a data compensating apparatus in a display apparatus includes converting image data of an n-th frame (where “n” is a natural number) into pre-compensation data of the n-th frame having a gray scale less than or equal to a gray scale of the image data of the n-th frame based on pre-compensation data of an (n−1)-th frame, storing the pre-compensation data of the n-th frame, and generating compensation data of the n-th frame having a gray scale greater than or equal to the gray scale of the image data of the n-th frame by using the image data of the n-th frame and the pre-compensation data of the (n−1)-th frame.
Abstract:
A liquid crystal display includes an image signal modifier for generating a modified signal based on a first image signal of a first frame, a second image signal of a second frame, and a lookup table. A data driver converts the modified signal into a data voltage which is supplied to a pixel of the display. The lookup table stores a plurality of reference modified signals for a plurality of reference first image signals and a plurality of reference second image signals. The lookup table includes a first lookup table having a gray gap of the reference first image signals and a gray gap of the reference second image signals of x, and a second lookup table having a gray gap of the reference first image signals and a gray gap of the reference second image signals of y, where y is greater than x.
Abstract:
An apparatus and method for providing and executing content are provided. The apparatus includes a controller to determine whether the content can be executed in the apparatus. If the content cannot be or does not desired to be executed in the apparatus, then an external apparatus may be sought to execute the content.