Abstract:
A joint structure connects a diverging branch pipe to a fuel rail for an internal combustion engine. The fuel rail is stainless steel or steel with rust prevention processing on at least the inner face. The diverging branch pipe is a double pipe with inner and outer pipes. The inner pipe has excellent rust preventing ability with respect to fuel on its inner face in comparison with the outer face of the outer pipe. The inner and outer pipes are connected by a nut for fastening through a joint fitting. A connecting seal portion of the diverging branch pipe and the joint fitting has rust preventing ability equal to that of the inner circumferential face of the diverging branch pipe. An entire liquid contact portion, including a seal face of the diverging branch pipe with respect to the fuel is covered with the inner pipe.
Abstract:
In a high pressure fuel injection pipe, pipe extension and heat treatment are repeated by using a header manufactured by transformation induced plastic type strength steel. A process for depositing residual austenite is then performed, after which a final pipe extension process is performed, and the joint portion is molded and bending processing is performed without performing perfect annealing at the size of a product.
Abstract:
A common rail is provided for promoting inner pressure fatigue strength at location in proximity to a branch pipe. The common rail includes a main pipe rail with a main flow path. At least one boss in provided on the peripheral wall and includes a branch hole communicating the main flow path. The branch pipe is provided with a connecting head that has a pressing face at and end of the branch pipe. The pressing face of the branch pipe is urged into a pressure receiving seat of the boss. A compressive residual stress is provided at location in the peripheral wall where the main flow path of the main pipe rail communicates with the branch hole. The compressive residual stress increases the pressure fatigue strength by substantially canceling tensile stress.
Abstract:
A joint structure for a branch connector in a common rail, comprising: a main pipe rail having a conduit therein on its axis and a plurality of through holes formed in its circumferential wall at an axial spacing, each of the through holes having a pressure receiving seat formed on the circumferential face thereof and opened to the outside; a branch connector having a conduit to communicate with the conduit of the main pipe rail and including a joint head formed at the end thereof and forming a pressure seat so that the branch connector is engaged with the main pipe rail by bringing the pressure seat thereof into abutment against the pressure receiving seat of the main pipe rail; a joint fitting mounted on the main pipe rail; and a nut assembled in advance in the branch connector and fastened into the joint fitting against the pressure of the joint head thereby to joint the branch connector to the main pipe. The joint fitting is made of a cylindrical sleeve nipple having a threaded face so that the branch connector is jointed to the main pipe rail by jointing the base end of the sleeve nipple to the outer circumference of the main pipe rail in the vicinity of the pressure receiving face.
Abstract:
To provide a steel pipe as a fuel injection pipe with high material strength, high internal pressure limit free from fatigue failure, prolonged fatigue life, and high reliability. A steel pipe as a fuel injection pipe of 500 N/mm2 or higher tensile strength comprising, by mass, C: 0.12 to 0.27%, Si: 0.05 to 0.40%, and Mn: 0.8 to 2.0%, and the balance being Fe and impurities, the contents of Ca, P, and S in the impurities being Ca: 0.001% or less, P: 0.02% or less, and S: 0.01% or less, respectively, characterized in that the maximum diameter of nonmetallic inclusions present in at least in a region extending from the inner surface of the steel pipe to a depth of 20 μm is 20 μm or less. Further, this steel pipe may contain, in place of a portion of Fe, at least one selected from among Cr: 1% or less, Mo: 1% or less, Ti: 0.04% or less, Nb: 0.04% or less, and V: 0.1% or less.
Abstract translation:提供具有高材料强度的钢管作为燃料喷射管,没有疲劳破坏的高内压极限,延长的疲劳寿命和高可靠性。 作为500N / mm 2以上的拉伸强度的燃料喷射管的钢管,以质量计C:0.12〜0.27%,Si:0.05〜0.40%,Mn:0.8〜2.0%,余量为Fe, 杂质中Ca,P,S的含量分别为Ca:0.001%以下,P:0.02%以下,S:0.01%以下,其特征在于,非金属夹杂物的最大直径存在于 至少在从钢管的内表面延伸到20μm的深度的区域中,为20μm以下。 此外,该钢管可以含有选自Cr:1%以下,Mo:1%以下,Ti:0.04%以下,Nb:0.04%以下的至少一种,代替Fe的一部分, V:0.1%以下。
Abstract:
A common-rail injection system is provided for a diesel engine and has excellent internal pressure fatigue resisting characteristics, vibrational fatigue resisting characteristics and cavitation resisting property and sheet face flawing resisting property, and can be made thin and light in weight. A main pipe rail is manufactured by transformation induced plastic type strength steel. After the main pipe rail is processed, residual austenite is generated by heat treatment, and the reduction processing of stress concentration of a branch hole and a main pipe rail side flow passage crossing portion is performed. Further, it is preferable that an induced plastic transformation is generated on the inner surface of the main pipe rail by autofrettage processing, and compression residual stress is left.
Abstract:
There is provided a high-pressure fuel pipe for diesel engines, which is excellent in inner-pressure fatigue resistant property, vibrational fatigue resistant property, cavitation-resistant property, seat surface crack resistant property, and bending shape stability, and capable of thinning and lightening. A high-pressure fuel pipe for diesel engines, composed of a low alloy transformation inducing plastic type strength steel containing residual austenite of 5 to 40 wt %, and wherein an inner surface of a flow passage has a crack depth of 20 μm or less, and plastic working is applied to an inner surface of a flow passage.
Abstract:
A member for a high pressure fluid or a member for a high pressure fluid with a built-in slider having higher quality which can be provided at a low price, and by which the generation of tensile stress in the lower end inner peripheral edge part of a branch hole can be canceled by compressive residual stress to be effectively restrained, the internal pressure fatigue strength in the branch hole part can be improved to be excellent in durability, prevent a fluid leakage due to the occurrence of cracks and then exhibit a sure and stable function, further only the addition of the pressing force applying process to the ordinary manufacturing process will be sufficient, and complicated equipment is not required to hardly cause the problems of an increase in the equipment cost due to an increase in the number of processes and lowering of productivity. The method of forming a branch hole communicating with a hollow part in a member for a high pressure fluid having the hollow part, which is characterized in that before or after, or simultaneously with a process of pressing inward the member for a high pressure fluid from the outside to form a part where compressive stress remains on the hollow part side inner peripheral surface, a process of boring a branch hole opened to the hollow part is executed to make the compressive residual stress exist in the peripheral edge of the branch hole, and a branch hole part of a member for a high pressure fluid formed by the described method.
Abstract:
A joint structure connects a diverging branch pipe to a fuel rail for an internal combustion engine. The fuel rail is stainless steel or steel with rust prevention processing on at least the inner face. The diverging branch pipe is a double pipe with inner and outer pipes. The inner pipe has excellent rust preventing ability with respect to fuel on its inner face in comparison with the outer face of the outer pipe. The inner and outer pipes are connected by a nut for fastening through a joint fitting. A connecting seal portion of the diverging branch pipe and the joint fitting has rust preventing ability equal to that of the inner circumferential face of the diverging branch pipe. An entire liquid contact portion, including a seal face of the diverging branch pipe with respect to the fuel is covered with the inner pipe.
Abstract:
A joint structure of a branch connector for a common rail capable of securing axial force applied to a seal surface and a branch connector and increasing bending fatigue strength of the branch connector is provided. In the joint structure of the branch connector for the common rail which includes a screw sleeve concentric with a bearing surface of a main pipe rail and connects a branch connector to the main pipe rail via a sleeve washer which has been externally fixed to the branch connector in advance to be combined therewith as one piece, a clearance is provided between an inner surface of the sleeve washer at an external opening thereof and an outer surface of the branch connector.