摘要:
A region of an SiC solution in the vicinity of an SiC seed crystal is cooled while suppressing the temperature variation in a peripheral region of the SiC solution. An apparatus includes a seed shaft and a crucible for an SiC solution. The seed shaft has a lower end surface for attachment to an SiC seed crystal. The crucible comprises a main body, an intermediate cover, and a top cover. The main body includes a first cylindrical portion and a bottom portion at a lower end portion of the first cylindrical portion. The intermediate cover is within the first cylindrical portion and above the liquid level of the SiC solution in the main body. The intermediate cover has a first through hole for the seed shaft. The top cover is disposed above the intermediate cover and has a second through hole for the seed shaft to pass through.
摘要:
A method for manufacturing an n-type SiC single crystal, enables the suppression of the variation in nitrogen concentration among a plurality of n-type SiC single crystal ingots manufactured. A method includes the steps of: providing a manufacturing apparatus (100) including a chamber (1) having an area in which a crucible (7) is to be disposed; heating the area in which the crucible (7) is to be disposed and evacuating the gas in the chamber (1); filling, after the evacuation, the chamber (1) with a mixed gas containing a noble gas and nitrogen gas; heating and melting a starting material housed in the crucible (7) disposed in the area to produce a SiC solution (8) containing silicon and carbon; and immersing a SiC seed crystal into the SiC solution under the mixed gas atmosphere to grow an n-type SiC single crystal on the SiC seed crystal.
摘要:
A manufacturing apparatus of a SiC single crystal which can suppress the generation of a polycrystal is provided. A jig (41) and a crucible (6) are accommodated in a chamber (1). A SiC solution (8) is housed in the crucible (6). The jig (41) includes a seed shaft (411) and a cover member (412). The seed shaft (411) can move up and down, and a SiC seed crystal (9) is attached to the lower surface thereof. The cover member (412) is attached to the lower end portion of the seed shaft (411). The cover member (412) is a housing which has an opening at its lower end, wherein the lower end portion of the seed shaft (411) is disposed in the cover member (412).
摘要:
A manufacturing apparatus of a SiC single crystal which can suppress the generation of a polycrystal is provided. A jig (41) and a crucible (6) are accommodated in a chamber (1). A SiC solution (8) is housed in the crucible (6). The jig (41) includes a seed shaft (411) and a cover member (412). The seed shaft (411) can move up and down, and a SiC seed crystal (9) is attached to the lower surface thereof. The cover member (412) is attached to the lower end portion of the seed shaft (411). The cover member (412) is a housing which has an opening at its lower end, wherein the lower end portion of the seed shaft (411) is disposed in the cover member (412).
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. for graphization and subsequently further heat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatment and the heat treatment in the inert gas.
摘要:
A SiC single crystal is produced by the solution growth method in which a seed crystal attached to a seed shaft is immersed in a solution of SiC dissolved in a melt of Si or a Si alloy and a SiC single crystal is allowed to grow on the seed crystal by gradually cooling the solution or by providing a temperature gradient therein. To this method, accelerated rotation of a crucible is applied by repeatedly accelerating to a prescribed rotational speed and holding at that speed and decelerating to a lower rotational speed or a 0 rotational speed. The rotational direction of the crucible may be reversed each acceleration. The seed shaft may also be rotated synchronously with the rotation of the crucible in the same or opposite rotational as the crucible. A large, good quality single crystal having no inclusions are produced with a high crystal growth rate.
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. forgraphization and subsequently firterheat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatnent and the heat treatment in the inert gas.
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. forgraphization and subsequently further heat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatment and the heat treatment in the inert gas.
摘要:
Provided is a method for producing SiC single crystals while maintaining a temperature gradient such that the temperature decreases from within an Si solution inside a graphite crucible toward the solution surface, with the SiC seed crystals that have contacted the solution surface serving as the starting point for crystal seed growth, wherein when the crystal growth surface of the SiC seed crystals, which serves as the starting point for SiC single crystal growth, contacts the solution surface, the height by which the solution rises to the side of the SiC seed crystals is within the range where the SiC single crystals that have grown from the crystal growth surface and the SiC single crystals that have grown from the side grow as one SiC single crystal unit. Also provided is a device for producing an SiC single crystal comprising a graphite crucible, a heating device for heating and melting base materials in the crucible to form a base material solution and maintaining a temperature gradient required for growth of SiC single crystal, a support rod which holds a SiC seed crystal at its bottom end, and a holding structure which maintains the holding by the support rod so that a height by which the solution rises to the side of the SiC seed crystal is within a range where the SiC single crystal that have grown from the crystal growth surface and the SiC single crystal that have grown from the side grow as one SiC single crystal unit.
摘要:
A SiC single crystal wafer on which a good quality epitaxial film by suppressing defects derived from the wafer can be grown has an affected surface layer with a thickness of at most 50 nm and a SiC single crystal portion with an oxygen content of at most 1.0×1017 atoms/cm3. This SiC single crystal wafer is manufactured from a high purity SiC bulk single crystal obtained by the solution growth method using raw materials with an oxygen content of at most 100 ppm and a non-oxidizing atmosphere having an oxygen concentration of at most 100 ppm.