摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. for graphization and subsequently further heat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatment and the heat treatment in the inert gas.
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. forgraphization and subsequently firterheat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatnent and the heat treatment in the inert gas.
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/&mgr;m and not more than 1500/&mgr;m, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. for graphization and subsequently further heat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatment and the heat treatment in the inert gas.
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. forgraphization and subsequently further heat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatment and the heat treatment in the inert gas.
摘要:
A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/μm and not more than 1500/μm, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C. forgraphization and subsequently further heat-treating the graphized material at a temperature exceeding a temperature of the oxidating heat treatment and the heat treatment in the inert gas.
摘要:
A graphite powder has surface closed-end structures in which the graphite c-plane layers of the graphite layer crystal lattices have closed-ends on the surface of the graphite powder by linking the ends of one or more pairs of the c-plane layers, leaving interstices which are open on the surface of the graphite. The number of open interstices is at least 100 and at most 1500 per micrometer in a c-axis direction of the graphite. Preferably, the graphite powder has a specific surface area of 1.0 m2/g or less. Such a graphite powder can be prepared either by graphitizing a carbon material, which has been pulverized at a high speed under well-controlled conditions before and/or after the carbonization, or by subjecting a carbon material, which has been pulverized under well-controlled conditions before and/or after the carbonization, to graphitization and then to oxidative heat treatment at a temperature of 600-800° C. and finally to heat treatment at a temperature of 800° C. or higher in an inert gas. The graphite powder can be used to produce negative electrodes of lithium ion secondary batteries having a high discharge capacity of at least 320 mAh/g and a high charge/discharge coulombic efficiency of at least 90%.
摘要:
A production apparatus is used for a solution growth method. The production apparatus includes a seed shaft and a crucible. The seed shaft has a lower end surface to which an SiC seed crystal is attached. The crucible contains an SiC solution. The crucible includes a cylindrical portion, a bottom portion, and an inner lid. The bottom portion is disposed at a lower end of the cylindrical portion. The inner lid is disposed in the cylindrical portion. The inner lid has a through hole and is positioned below a liquid surface of the SiC solution when the SiC solution is contained in the crucible.
摘要:
Provided is a method for producing SiC single crystals while maintaining a temperature gradient such that the temperature decreases from within an Si solution inside a graphite crucible toward the solution surface, with the SiC seed crystals that have contacted the solution surface serving as the starting point for crystal seed growth, wherein when the crystal growth surface of the SiC seed crystals, which serves as the starting point for SiC single crystal growth, contacts the solution surface, the height by which the solution rises to the side of the SiC seed crystals is within the range where the SiC single crystals that have grown from the crystal growth surface and the SiC single crystals that have grown from the side grow as one SiC single crystal unit. Also provided is a device for producing an SiC single crystal comprising a graphite crucible, a heating device for heating and melting base materials in the crucible to form a base material solution and maintaining a temperature gradient required for growth of SiC single crystal, a support rod which holds a SiC seed crystal at its bottom end, and a holding structure which maintains the holding by the support rod so that a height by which the solution rises to the side of the SiC seed crystal is within a range where the SiC single crystal that have grown from the crystal growth surface and the SiC single crystal that have grown from the side grow as one SiC single crystal unit.
摘要:
A SiC single crystal wafer on which a good quality epitaxial film by suppressing defects derived from the wafer can be grown has an affected surface layer with a thickness of at most 50 nm and a SiC single crystal portion with an oxygen content of at most 1.0×1017 atoms/cm3. This SiC single crystal wafer is manufactured from a high purity SiC bulk single crystal obtained by the solution growth method using raw materials with an oxygen content of at most 100 ppm and a non-oxidizing atmosphere having an oxygen concentration of at most 100 ppm.
摘要:
A manufacturing apparatus for SiC single crystal has a control unit to control induction heating such that frequency f (Hz) of alternating current to be passed to the induction heating unit satisfies Formula (1); D1 (mm) is permeation depth of electromagnetic waves into a side wall of a crucible by the heating unit, D2 (mm) is permeation depth of electromagnetic waves into a SiC solution, T (mm) is thickness of the crucible side wall of the crucible, and R (mm) is crucible inner radius: (D1−T)×D2/R>1 (1) where, D1 is defined by Formula (2), and D2 by Formula (3): D1=503292×(1/(f×σc×μc))1/2 (2) D2=503292×(1/(f×σs×μs))1/2 (3); σc is electric conductivity (S/m) of the sidewall, σs is electric conductivity (S/m) of the SiC solution; μc is relative permeability of the sidewall, and μs relative permeability of the SiC solution.