Abstract:
An expandable stent is implanted in a body lumen, such as a coronary artery, peripheral artery, or other body lumen. The stent includes a plurality of rings connected by links. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. The stent can be compressed or crimped onto a catheter to a very low profile since links are integrally formed from a portion of the struts forming the rings. The stent is constructed so that the cylindrical rings are very close together in order to provide maximum scaffolding, and if the stent has a drug coating, to provide a uniform drug delivery over the length of the stent. The connecting links are integrally formed from a portion of the struts forming the rings so that the links can have a maximum length thereby providing increased longitudinal flexibility of the stent.
Abstract:
An implantable medical device includes a structural body made from a superelastic material and includes one or more marker holders integrally formed on the structural body. Each marker holder is designed to hold a radiopaque marker which has a level of radiopacity greater than the superelastic material. The radiopaque marker can be made from a nickel-titanium alloy which includes a ternary element. The ternary element can be selected from the group of elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, and hafnium. In one form, the marker holder includes a pair of projecting fingers connected together at a notched region to cooperatively create a particular-shaped opening. This opening, in turn, is adapted to receive a similarly shaped portion formed on the radiopaque marker. In one form, the radiopaque marker includes an inner core which is partially, or completely, encased by an outer layer. This inner core can be made from a highly radiopaque material while the outer layer is formed from a material that is easier to weld to the marker.
Abstract:
System including a delivery catheter and a stent disposed at a distal end of the delivery catheter. The stent includes a plurality of radially expandable rings disposed adjacent to one another to define a tubular member having a proximal end portion, and a distal end portion, and a middle portion, each of the radially expandable rings including a plurality of strut members. The middle portion of the tubular member include a plurality of interconnection members extending between longitudinally adjacent expandable rings, the number of the plurality of the interconnection members being greater than that of the end portion of the tubular member. The stent also includes a transition section between the end portion and the middle portion, the transition section including at least one open cell and at least one closed cell. The stent can be self-expandable or balloon expandable.
Abstract:
A stent delivery catheter system having a reinforcing tether member secured to the catheter such that the catheter is provided with an improved combination of an enhanced tensile strength together with other catheter performance characteristics such as low profile and high flexibility. The stent delivery system includes an elongated delivery catheter including a reinforcing tether member secured to the inner tubular member of the catheter. The tether member has a distal end length extending helically from the distal tip member or proximally adjacent to the proximal end of the distal tip member of the catheter and a portion that also extends axially through the stent holder region of the catheter. This reinforcing tether member provides enhanced tensile strength to the catheter.
Abstract:
The invention is directed a delivery system for implantation a self-expanding medical device in a body which includes a control handle and a catheter portion. The catheter portion includes an outer restraining member which covers the collapsed, medical device, an inner catheter member having a distal end including a region upon which the medical device is mounted, and an outer sheath which is removably attached to the control handle. The outer sheath creates a conduit for the catheter portion to prevent the inner catheter member from moving axially when the outer restraining member is retracted. The control handle has a rotatable thumbwheel to actuate a retraction mechanism attached to the proximal end of the outer restraining member which moves the restraining member in a proximal direction to deploy the medical device.
Abstract:
A stent having a compacted configuration in which adjacent crowns of its undulating rings overlap one another. The overlapping compacted configuration provides for a relatively low profile in view of the coverage that is achieved by the stent upon expansion.
Abstract:
Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath is disclosed. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures is disclosed. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
Abstract:
A catheter assembly is provided having an inner member and an outer member extending along a longitudinal axis, the inner member and the outer member having a coaxial configuration and dimensioned for relative axial movement. The outer member may include an anti rotation member adapted to engage with a longitudinal slot formed on the inner member so as to maintain rotational alignment between inner member and outer member. The inner member can be made with a proximal portion made from a tubing such as hypotubing or a coil tubing. The inner member also may be made with a proximal portion made with a support mandrel. A coil tubing can be utilized to form the guide wire receiving member which is attached to the inner member.
Abstract:
A catheter system and method for implanting an endoprosthesis such as a stent at a treatment site in a patient's body lumen. The catheter provides a complete system for stent delivery, dilatation, and delivery and/or recovery of an expandable device, such as an embolic protection device, adjacent to the treatment site in the body lumen.
Abstract:
Example embodiments include an endoprosthesis that has a first annular segment that is radially expandable and a second annular segment that is also radially expandable. An axial segment, which includes one or more struts, is operatively associated with the first annular segment and the second annular segment to maintain a specified distance between the first annular segment and the second annular segment.