Abstract:
A plasmonic phase modulator and a method of phase modulation employ modulation of surface plasmons. The plasmonic phase modulator includes a semiconductor substrate configured to provide a surface charge that forms a plasmonic channel at the substrate surface. The modulator further includes an electrode and an insulator between the electrode and the semiconductor substrate. The electrode is configured to provide an electric field that influences the surface charge. The electric field includes a bias field component and a modulation field component. The surface plasmon is supported within the plasmonic channel at an interface between the semiconductor substrate surface and the insulator. A phase of the surface plasmon in the plasmonic channel is modulated by changes in the electric field. The method includes propagating the surface plasmon in the plasmonic channel and varying the modulation field component to modulate the phase of the propagating surface plasmon.
Abstract:
An optical MEMS retro-reflective apparatus with modulation capability having a retro-reflecting structure including a pair of reflective surfaces; and a MEMS device for moving at least one of the reflective surfaces of said pair of reflective surfaces relative to another one of the reflective surfaces of said pair of reflective surfaces a distance which causes the pair of reflective surfaces to switch between a reflective mode of operation and a transmissive mode of operation. A substrate and a moveable grating structure may be substituted for the reflective surfaces.
Abstract:
An optical MEMS retro-reflective apparatus with modulation capability having a retro-reflecting structure including a pair of reflective surfaces; and a MEMS device for moving at least one of the reflective surfaces of said pair of reflective surfaces relative to another one of the reflective surfaces of said pair of reflective surfaces a distance which causes the pair of reflective surfaces to switch between a reflective mode of operation and a transmissive mode of operation. A substrate and a moveable grating structure may be substituted for the reflective surfaces.
Abstract:
A spread spectrum waveform generator has a photonic oscillator and an optical heterodyne synthesizer. The photonic oscillator is a multi-tone optical comb generator for generating a series of RF comb lines on an optical carrier. The optical heterodyne synthesizer includes first and second phase-locked lasers, where the first laser feeds the multi-tone optical comb generator and the second laser is a single tone laser whose output light provides a frequency translation reference. At least one photodetector is provided for heterodyning the frequency translation reference with the optical output of the photonic oscillator to generate a spread spectrum waveform. A receiver pre-processor may be provided to operate on the spread spectrum waveform.
Abstract:
A multi-tone photonic oscillator comprises a laser; an optical modulator coupled to the laser; and a delay line and a photodetector coupled to the optical modulator for generating a delayed electrical signal representation of the output of the optical modulator; wherein the optical modulator being responsible for the delayed electrical signal for generating multiple tones where the frequency intervals of the tones is a function of the amount of delay imposed by the delay line.
Abstract:
A light valve (10) includes a layer of a liquid crystal (16), a MOS substrate structure (18) with a dielectric layer (24) and a semiconductor layer (26), and an optically isolating mirror (14) between the liquid crystal layer (16) and the substrate structure (18). An external AC biasing voltage is applied across the MOS substrate (18) and the liquid crystal layer (16). The liquid crystal layer (16) is sufficiently thick that it operates in the surface birefringent mode with a high contrast ratio and a short response time to changes in the write-in light beam, when a sufficiently high biasing voltage V.sub.p is applied.
Abstract:
A plasmonic phase modulator and a method of phase modulation employ modulation of surface plasmons. The plasmonic phase modulator includes a semiconductor substrate configured to provide a surface charge that forms a plasmonic channel at the substrate surface. The modulator further includes an electrode and an insulator between the electrode and the semiconductor substrate. The electrode is configured to provide an electric field that influences the surface charge. The electric field includes a bias field component and a modulation field component. The surface plasmon is supported within the plasmonic channel at an interface between the semiconductor substrate surface and the insulator. A phase of the surface plasmon in the plasmonic channel is modulated by changes in the electric field. The method includes propagating the surface plasmon in the plasmonic channel and varying the modulation field component to modulate the phase of the propagating surface plasmon.
Abstract:
An apparatus and methods for encoding and decoding data are disclosed. The method for transmitting and receiving data allows for coding and decoding each bit of data with a different code. The transmitter and receiver devices allow encoding and decoding, respectively, each bit of data with different a code.
Abstract:
A vertical cavity modulator/detector (VCMD) device and a method for modulating and detecting light are disclosed. The VCMD device contains an n-type contact layer, a transparent tuning layer, a multiple quantum well structure, a p-type contact layer, a low reflectance mirror arranged to be an input for a light that is to be modulated and a light that is to be detected, and a high reflectance mirror, wherein said n-type contact layer, said transparent tuning layer, said multiple quantum well structure and said p-type contact layer are arranged in a stack between said low reflectance mirror and said high reflectance back mirror.
Abstract:
An agile spread spectrum waveform generator comprises a photonic oscillator and an optical heterodyne synthesizer. The photonic oscillator comprises a multi-tone optical comb generator for generating a series of RF comb lines on an optical carrier. The optical heterodyne synthesizer includes first and second phase-locked lasers; the first laser feeding the multi-tone optical comb generator and the second laser comprising a rapidly wavelength-tunable single tone laser whose output light provides a frequency translation reference. A photodetector is provided for heterodyning the frequency translation reference with the optical output of the photonic oscillator to generate an agile spread spectrum waveform.