Abstract:
Disclosed herein is an electric machine stator. The electric machine stator includes a tubular body with a plurality of radial slots formed into a perimetrical surface thereof, each of the plurality of slots having a width that varies over at least a portion of a radial depth of the slot such that the slot width is narrower near the perimetrical surface than the slot width further from the perimetrical surface. The stator further includes at least one winding positioned within each of the plurality of slots and at least one of the at least one winding is deformed within the slot such that at least one dimension of the at least one winding is greater than a narrowest slot width dimension thereby retaining the winding within the slot.
Abstract:
An automotive alternator including a rotor having a plurality of poles; a plurality of phases in operable communication with the plurality of poles; and a stator core in operable communication with the rotor, the stator having a number of slots defined by: S=(P×PH)+((M×PH)+N) where S=number of slots P=number of poles PH=number of phases M=a whole integer greater than or equal to 0 N=a whole integer selected from a group of integers ranging from, and including, 1 through the number of phases minus 1. A method for reducing magnetic noise in an automotive alternator includes selecting a number of poles, selecting a number of phases, selecting a number of stator core slots, the foregoing selections interacting in the automotive alternator to produce an order of frequency of a tangential force different than any multiple of the number of phases and different than an order of frequency of a radial force of the alternator.
Abstract:
A stator for an electric machine includes a generally cylindrically-shaped stator core having a plurality of circumferentially-spaced and axially-extending core teeth that define a plurality of circumferentially-spaced and axially-extending core slots extending between first and second ends of the stator core. Within the core is a stator winding having a plurality of phases, each of the phases including at least one conductor having a plurality of slot segments housed in the core slots. The slot segments are alternately connected at the first and second ends of the stator core by a plurality of end loop segments. The stator core defines an inner diameter and each of the core slots has an end. The winding only partially fills the core slots between the inner diameter and the ends such that there is empty space between the inner diameter and the end within each of the core slots.
Abstract:
A stator of a rotary electric machine having secured core slot insulators includes a multi-phase stator winding, having a plurality of slot segments that are adapted to be radially inserted into a plurality of circumferentially spaced axially-extending core slots in a surface of a cylindrically-shaped stator core. The stator winding includes the plurality of slot segments alternately connected at the first and second ends of the stator core by a plurality of end loop segments to form the winding. The plurality of core slots house an insulator to electrically isolate the slot segments from the core slots. The insulator is secured to the sides of the core slot prior to the process of radial inserting the plurality of slot segments into the plurality of core slots of the cylindrically-shaped stator core.
Abstract:
An alternator including a housing, and a stator fixedly mounted relative to the housing. The stator includes a plurality of stator slots and a stator winding arranged in the plurality of stator slots. The stator winding includes at least five stator leads extending from five adjacent ones of the plurality of stator slots. A terminal assembly is mounted to an outer surface of the housing and is connected with at least three of the at least five stator leads. The terminal assembly includes a body formed from a non-electrically conductive material and a plurality of conductive members at least partially covered by the body. The plurality of conductive members is associated with the stator winding. Each of the plurality of conductive members includes a plurality of input connectors spread out along the body in an arc that is greater than 90°.
Abstract:
A brush holder assembly for an alternator having a rotational axis includes a pair of brushes each having a contacting surface defining a width and a height, and each having a shunt wire extending laterally from the brush in the widthwise direction. The brush holder assembly includes a housing having first and second brush chambers, corresponding first and second wire cavities each defining a cavity height, and first and second slots respectively interposed between the corresponding chamber and cavity. The respective shunt wires extend through the first and second slots then through the first and second wire cavities. The cavity heights are each at least approximately 0.9 times the height of one of the brushes. The height of the first wire cavity is less than approximately 0.97 times ((A/2) plus B), wherein A is the brush height and B is the distance between the brushes.
Abstract:
A brush holder assembly for an alternator having a rotational axis includes a pair of brushes each having a contacting surface defining a width and a height, and each having a shunt wire extending laterally from the brush in the widthwise direction. The brush holder assembly includes a housing having first and second brush chambers, corresponding first and second wire cavities each defining a cavity height, and first and second slots respectively interposed between the corresponding chamber and cavity. The respective shunt wires extend through the first and second slots then through the first and second wire cavities. The cavity heights are each at least approximately 0.9 times the height of one of the brushes. The height of the first wire cavity is less than approximately 0.97 times ((A/2) plus B), wherein A is the brush height and B is the distance between the brushes.
Abstract:
An electric machine includes a rotor. The rotor includes a body having a number of pole members, a central hub, and a plurality of mounting members. The plurality of mounting members are fewer than half the number of pole members. A fan member is mounted to the rotor. The fan member includes a number of fan blades that project outward from a hub portion. A plurality of mounting elements are provided on select ones of the number of fan blades. The plurality of mounting members engage respective ones of the plurality of mounting elements to attach the fan member to the rotor.
Abstract:
An apparatus for loading stator windings into a stator core includes an arbor member including a body having an outer diametric portion and a central axis. The outer diametric potion includes a plurality of slots. The apparatus also includes a guide track having a first end that extends to a second end through a slide portion. The first end is positioned adjacent the outer diametric portion of the arbor member. At least one of the guide track and the arbor member is selectively positionable to guide slot segment portions of a stator winding into predetermined ones of the plurality of slots.
Abstract:
A method of loading stator windings into a stator core includes guiding a first stator winding including a plurality of slot segment portions along at least one guide track towards an arbor member having a plurality of slots, inserting one of the plurality of slot segment portions of the first stator winding into one of the plurality of slots, and guiding a second stator winding including a plurality of slot segment portions along the at least one guide track towards the arbor member. The method also includes indexing one of the at least one guide track and the arbor member to position another of the plurality of slots adjacent the at least one guide track, inserting one of the plurality of slot segment portions of the second stator winding into another of the plurality of slots, rotating the arbor member, and feeding a plurality of slot segment portions into remaining ones of the plurality of slots.