Abstract:
An apparatus for loading stator windings into a stator core includes an arbor member including a body having an outer diametric portion and a central axis. The outer diametric potion includes a plurality of slots. The apparatus also includes a guide track having a first end that extends to a second end through a slide portion. The first end is positioned adjacent the outer diametric portion of the arbor member. At least one of the guide track and the arbor member is selectively positionable to guide slot segment portions of a stator winding into predetermined ones of the plurality of slots.
Abstract:
An apparatus for loading stator windings into a stator core. The apparatus includes an arbor member including a body having an outer diametric portion including a plurality of slots. The apparatus also includes a first guide track having a first end that is positioned adjacent the outer diametric portion. A second guide track includes a first end is positioned adjacent the outer diametric portion and spaced from the first end of the first guide track. The apparatus further includes a third guide track including a first end is positioned adjacent the outer diametric portion and spaced from the first end of the first guide track and the first end of the second guide track. At least one of the first, second, and third guide tracks and the arbor member is positionable to guide slot segment portions of corresponding first, second, and third stator windings into predetermined ones of the slots.
Abstract:
An apparatus for loading stator windings into a stator core includes an arbor member including a body having an outer diametric portion and a central axis. The outer diametric potion includes a plurality of slots. The apparatus also includes a guide track having a first end that extends to a second end through a slide portion. The first end is positioned adjacent the outer diametric portion of the arbor member. At least one of the guide track and the arbor member is selectively positionable to guide slot segment portions of a stator winding into predetermined ones of the plurality of slots.
Abstract:
A method of loading stator windings into a stator core includes guiding a first stator winding including a plurality of slot segment portions along at least one guide track towards an arbor member having a plurality of slots, inserting one of the plurality of slot segment portions of the first stator winding into one of the plurality of slots, and guiding a second stator winding including a plurality of slot segment portions along the at least one guide track towards the arbor member. The method also includes indexing one of the at least one guide track and the arbor member to position another of the plurality of slots adjacent the at least one guide track, inserting one of the plurality of slot segment portions of the second stator winding into another of the plurality of slots, rotating the arbor member, and feeding a plurality of slot segment portions into remaining ones of the plurality of slots.
Abstract:
An apparatus for loading stator windings into a stator core. The apparatus includes an arbor member including a body having an outer diametric portion including a plurality of slots. The apparatus also includes a first guide track having a first end that is positioned adjacent the outer diametric portion. A second guide track includes a first end is positioned adjacent the outer diametric portion and spaced from the first end of the first guide track. The apparatus further includes a third guide track including a first end is positioned adjacent the outer diametric portion and spaced from the first end of the first guide track and the first end of the second guide track. At least one of the first, second, and third guide tracks and the arbor member is positionable to guide slot segment portions of corresponding first, second, and third stator windings into predetermined ones of the slots.
Abstract:
A method of loading stator windings into a stator core includes guiding a first stator winding including a plurality of slot segment portions along at least one guide track towards an arbor member having a plurality of slots, inserting one of the plurality of slot segment portions of the first stator winding into one of the plurality of slots, and guiding a second stator winding including a plurality of slot segment portions along the at least one guide track towards the arbor member. The method also includes indexing one of the at least one guide track and the arbor member to position another of the plurality of slots adjacent the at least one guide track, inserting one of the plurality of slot segment portions of the second stator winding into another of the plurality of slots, rotating the arbor member, and feeding a plurality of slot segment portions into remaining ones of the plurality of slots.
Abstract:
An apparatus for loading stator windings into a stator core includes an arbor member including a body having a central axis and an outer diametric portion provided with a plurality of slots. An insertion element is rotatably mounted adjacent the arbor member. The insertion element includes a plurality of slot elements that are configured to register with the plurality of slots. A loading member is rotatably mounted adjacent the insertion element. The loading member includes a plurality of slot members that are configured to register with the plurality of slot elements. The loading member is selectively operated to receive a stator winding into one of the plurality of slot members and transfer the stator winding into one of the plurality of slot elements. The at least one insertion element is selectively operated to transfer the stator winding into one of the plurality of slots of the arbor member.
Abstract:
An apparatus for loading stator windings into a stator core includes an arbor member including a body having a central axis and an outer diametric portion provided with a plurality of slots. An insertion element is rotatably mounted adjacent the arbor member. The insertion element includes a plurality of slot elements that are configured to register with the plurality of slots. A loading member is rotatably mounted adjacent the insertion element. The loading member includes a plurality of slot members that are configured to register with the plurality of slot elements. The loading member is selectively operated to receive a stator winding into one of the plurality of slot members and transfer the stator winding into one of the plurality of slot elements. The at least one insertion element is selectively operated to transfer the stator winding into one of the plurality of slots of the arbor member.
Abstract:
A brush holder assembly for an alternator having a rotational axis includes a pair of brushes each having a contacting surface defining a width and a height, and each having a shunt wire extending laterally from the brush in the widthwise direction. The brush holder assembly includes a housing having first and second brush chambers, corresponding first and second wire cavities each defining a cavity height, and first and second slots respectively interposed between the corresponding chamber and cavity. The respective shunt wires extend through the first and second slots then through the first and second wire cavities. The cavity heights are each at least approximately 0.9 times the height of one of the brushes. The height of the first wire cavity is less than approximately 0.97 times ((A/2) plus B), wherein A is the brush height and B is the distance between the brushes.
Abstract:
Disclosed herein is an electric machine. The electric machine includes, a housing defining an internal volume, a stationary shaft fixedly attached to the housing, a stationary field coil attached to the shaft, a pole assembly rotatable about the shaft, and a pulley fixedly attached to the pole assembly being positioned externally of the internal volume.