FLUORESCENCE STANDARD, AND THE USE THEREOF
    11.
    发明申请
    FLUORESCENCE STANDARD, AND THE USE THEREOF 有权
    荧光标准及其使用

    公开(公告)号:US20110076687A1

    公开(公告)日:2011-03-31

    申请号:US12937009

    申请日:2009-04-17

    摘要: The invention concerns fluorescence standards, and in particular fluorescence standards for calibrating optical detectors. According to the invention, a fluorescent mineral or mixtures of minerals are employed for use as a fluorescence standard. The fluorescent mineral can be a naturally occurring mineral or a synthetically produced mineral. Preferred fluorescent minerals for use as fluorescence standards are corundum, fluorite, turquoise, amber, zircon, zoisite, iolite or cordierite, spinel, topaz, calcium fluorite, sphalerite or zincblende, calcite or calcspar, apatite, scheelite or calcium tungstate, willemite, feldspars, sodalite, a uranium mineral, a mineral containing Al3+, and in particular ruby and sapphire.

    摘要翻译: 本发明涉及荧光标准,特别是用于校准光学检测器的荧光标准。 根据本发明,荧光矿物或矿物质的混合物用作荧光标准。 荧光矿物可以是天然存在的矿物质或合成产生的矿物质。 用作荧光标准的优选的荧光矿物是刚玉,萤石,绿松石,琥珀,锆石,堇青石,石英或堇青石,尖晶石,黄玉,萤石,闪锌矿或闪锌矿,方解石或钙质,磷灰石,白钨矿或钨酸钙,硅锌矿,长石 ,钠盐,铀矿物质,含有Al3 +的矿物,特别是红宝石和蓝宝石。

    APPARATUS FOR MEASURING AN ANALYTE IN AN EYE FLUID
    12.
    发明申请
    APPARATUS FOR MEASURING AN ANALYTE IN AN EYE FLUID 有权
    用于测量眼液中分析物的装置

    公开(公告)号:US20100053556A1

    公开(公告)日:2010-03-04

    申请号:US12374772

    申请日:2007-07-23

    IPC分类号: A61B3/10 G01C3/02

    摘要: The invention proposes a manual measuring appliance (112) and an analytical measuring system (110) which can be used to measure at least one analyte in an eye fluid of an eye (114). The handheld measuring appliance (112) comprises a measuring system (120) and a positioning system (122). The measuring system (120) can measure at least one property of the at least one analyte and/or at least one analyte-dependent change of property of at least one ocular sensor (116) in the eye fluid, and this can be used to infer a concentration of the analyte in the eye fluid. The positioning system (122) is set up to measure a spatial positioning, wherein the spatial positioning comprises a distance between at least one measurement location in the eye (114) and the handheld measuring appliance (112) and also furthermore at least one further positioning co-ordinate. The positioning system (122) comprises at least one of the following systems: a camera system, particularly a monocular or binocular camera system, having at least one camera (410; 910); an image recognition system; a triangulation system; a propagation time measuring system, particularly for 1-, 2- or 3-dimensional propagation time measurement, particularly using at least one laser and/or at least one phase mix detector (PMD); a 1-, 2- or 3-dimensional intensity measuring system for at least one signal; a 2- or 3-dimensional magnetoresistive measuring system.

    摘要翻译: 本发明提出了一种手动测量仪器(112)和分析测量系统(110),其可用于测量眼睛(114)的眼睛液体中的至少一种分析物。 手持式测量仪器(112)包括测量系统(120)和定位系统(122)。 测量系统(120)可以测量眼液中至少一种分析物的至少一种性质和/或至少一种分析物依赖的至少一种眼睛传感器(116)的性质变化,并且这可以用于 推测眼液中分析物的浓度。 定位系统(122)被设置为测量空间定位,其中空间定位包括眼睛(114)中的至少一个测量位置与手持式测量仪器(112)之间的距离,此外还包括至少一个另外的定位 坐标。 定位系统(122)包括以下系统中的至少一个:具有至少一个照相机(410; 910)的相机系统,特别是单目或双目相机系统。 图像识别系统; 三角测量系统; 传播时间测量系统,特别是对于1或2维或3维传播时间测量,特别是使用至少一个激光和/或至少一个相位混合检测器(PMD); 用于至少一个信号的1,2或3维强度测量系统; 2或3维磁阻测量系统。

    Apparatus for measuring an analyte concentration from an ocular fluid
    13.
    发明授权
    Apparatus for measuring an analyte concentration from an ocular fluid 有权
    用于从眼液测量分析物浓度的装置

    公开(公告)号:US07406345B2

    公开(公告)日:2008-07-29

    申请号:US10545220

    申请日:2004-02-13

    IPC分类号: A61B5/1455

    摘要: The present invention relates to a hand-held fluorescence photometer and method for measuring an analyte level, preferably a blood glucose level, from an ocular fluid. The photometer is based on a dual beams measuring system and it is capable of defining the correct positioning for the measurement. Only when the apparatus is correctly positioned the actual analyte measurement automatically takes place.

    摘要翻译: 本发明涉及用于从眼液测量分析物水平,优选血糖水平的手持荧光光度计和方法。 光度计基于双光束测量系统,它能够定义测量的正确定位。 只有当设备正确定位时,才会自动进行实际的分析物测量。