Abstract:
The invention relates to a high-breakdown voltage heterostructure field-effect transistor (FET), which can be used under a high temperature condition. The FET device from bottom upward in succession includes a semiconductor substrate, a buffer layer, a delta-doped sheet, an undoped layer, a sub-channel layer, an active channel layer, a gate layer, and an ohmic contact layer.
Abstract:
A light-emitting diode (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a substrate, a first type conductivity semiconductor layer, an active layer, a second type conductivity semiconductor layer, a transparent conductive oxide stack structure, a first electrode, and a second electrode. The first semiconductor layer on the substrate has a first portion and a second portion. The active layer and the second semiconductor layer are subsequently set on the first portion. The transparent conductive oxide stack structure on the second semiconductor layer has at least two resistant interfaces. The first electrode is above the second portion, and the second electrode is above the transparent conductive oxide stack structure.
Abstract:
A light-emitting diode (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a substrate, a first type conductivity semiconductor layer, an active layer, a second type conductivity semiconductor layer, a transparent conductive oxide stack structure, a first electrode, and a second electrode. The first semiconductor layer on the substrate has a first portion and a second portion. The active layer and the second semiconductor layer are subsequently set on the first portion. The transparent conductive oxide stack structure on the second semiconductor layer has at least two resistant interfaces. The first electrode is above the second portion, and the second electrode is above the transparent conductive oxide stack structure.
Abstract:
A light-emitting diode (LED) structure and a method for manufacturing the LED structure are disclosed for promoting the recognition rate of LED chips, wherein a roughness degree of the surface under a first electrode pad of a first conductivity type is made similar to that of the surface under a second electrode pad of a second conductivity type, so that the luster shown from the first electrode pad can be similar to that from the second electrode pad, thus resolving the poor recognition problem of wire-bonding machines caused by different lusters from the first and second electrode pads.
Abstract:
A light-emitting diode (LED) structure and a method for manufacturing the same are described. The light-emitting diode structure includes a p-type electrode, a bonding substrate, a p-type semiconductor layer, an active layer, an n-type semiconductor layer, an epitaxial growth substrate and an n-type electrode. The bonding substrate is disposed on the p-type electrode. The p-type semiconductor layer is disposed on the bonding substrate. The active layer is disposed on the p-type semiconductor layer. The n-type semiconductor layer is disposed on the active layer. The epitaxial growth substrate is disposed on the n-type semiconductor layer, wherein the epitaxial growth substrate includes an opening penetrating the epitaxial growth substrate. The n-type electrode is disposed in the opening and is electrically connected to the n-type semiconductor layer.
Abstract:
A light-emitting diode (LED) device includes a substrate, an epitaxial layer, a first electrode and a second electrode. The epitaxial layer is disposed on the substrate. The first electrode is disposed to the epitaxial layer and the second electrode is disposed on the epitaxial layer, and a first conductive finger of the second electrode and a first conductive finger of the first electrode are overlapped. Because the first conductive finger of the second electrode and the first conductive finger of the first electrode are overlapped, the light-emitting area of the LED device can be increased and the light shielded by the electrodes can be decreased significantly. Besides, overlapped electrodes can form a capacitor which can store electric charges to enhance the antistatic ability of the LED device.
Abstract:
A light-emitting diode and the manufacturing method thereof are disclosed. The manufacturing method includes the steps of: sequentially forming a bonding layer, a geometric pattern layer, a reflection layer, an epitaxial structure and a first electrode on a permanent substrate, wherein the geometric pattern layer has a periodic structure; and forming a second electrode on one side of the permanent substrate.
Abstract:
In one aspect of the invention, a light emitting device includes an epi layer having multiple layers of semiconductors formed on a substrate, a first electrode and a second electrode having opposite polarities with each other, and electrically coupled to corresponding semiconductor layers, respectively, of the epi layer, and a rod structure formed on the epi layer. The rod structure includes a plurality of rods distanced from each other.
Abstract:
A light-emitting diode (LED) device includes a substrate and an epitaxial layer which is disposed on a surface of the substrate. A depression is disposed to a sidewall of the LED device, and a reflective layer is disposed to on least one portion of the depression. By the reflective layer disposed to the depression of the sidewall of the LED device, the light loss caused by the interface of the substrate and the epitaxial layer can be reduced, the light absorbed by the substrate can be decreased, and the angle of the light exiting from the LED device can be adjusted. A manufacturing method of the LED device is also disclosed.
Abstract:
A light-emitting diode (LED) structure and a method for manufacturing the LED structure are disclosed for promoting the recognition rate of LED chips, wherein a roughness degree of the surface under a first electrode pad of a first conductivity type is made similar to that of the surface under a second electrode pad of a second conductivity type, so that the luster shown from the first electrode pad can be similar to that from the second electrode pad, thus resolving the poor recognition problem of wire-bonding machines caused by different lusters from the first and second electrode pads.