Abstract:
A method of manufacturing a CMOS TFT including forming first and second semiconductor layers on an insulating substrate using a first mask, respectively, the substrate having first and second regions, the first semiconductor layer formed on the first region, the second semiconductor layer formed on the second region; forming sequentially a first insulating layer, a first metal layer and a second insulating layer over the whole surface of the substrate; etching a portion of the first metal layer and a portion of the second insulating layer over the first region of the substrate using a second mask to form a first gate electrode and a first capping layer; forming first spacers on both side wall portion of the first gate electrode and the first capping layer; ion-implanting a first conductive-type high-density impurity into the first semiconductor layer using the first spacers and the first gate electrode as a mask to form first high-density source and drain regions; etching a portion of the first metal layer and a portion of the second insulating layer over the second region of the substrate using a third mask to form a second gate electrode and a second capping layer; and ion-implanting a second conductive-type high density impurity into the second semiconductor layer using the third mask to form second high-density source and drain regions.
Abstract:
An organic light emitting display device (OLED) and a method of fabricating the same. The OLED includes: a substrate; a thin film transistor on the substrate and including a source electrode and a drain electrode; a first insulating layer on the substrate having the source and drain electrodes; a second insulating layer on the first insulating layer and including a trench; a via hole formed in the trench over the first and second insulating layers and exposing a portion of the source electrode or the drain electrode; a first electrode in the trench and connected to one of the source electrode and the drain electrode through the via hole; a pixel defining layer on the first electrode and having an opening exposing the first electrode; an organic layer in the opening and having at least an organic emission layer; and a second electrode on an entire surface of the substrate having the organic layer.
Abstract:
Provided is an organic light emitting diode (OLED) display device, including: a substrate; a semiconductor layer on the substrate; a gate insulating layer on the substrate with the semiconductor layer; a gate electrode on a region of the gate insulating layer corresponding to the semiconductor layer and insulated from the semiconductor layer; source and drain electrodes connected to the semiconductor layer; metal layers on the source and drain electrodes, spaced a distance apart from each other, and including nickel; a passivation layer over the gate insulating layer; a first electrode on the passivation layer, and electrically connected to the metal layers; an organic layer on the first electrode; and a second electrode on the organic layer.
Abstract:
A novel design for an electrode for a thin film transistor. The novel design allows for formation of a normal conductive channel between a source electrode and a drain electrode even after a heat treatment process, and a flat panel display including the thin film transistor. The thin film transistor includes a source electrode, a drain electrode, a gate electrode, and a semiconductor layer, wherein at least one of the source electrode, the drain electrode, and the gate electrode includes an aluminum alloy layer, and titanium layers are formed on both surfaces of the aluminum alloy layer. The electrodes are preferably absent any pure aluminum as pure aluminum can diffuse into the semiconductor layer causing a defect region and preventing a conductive channel from forming in the thin film transistor.
Abstract:
A flat panel display device with improved electrical characteristics and a simplified manufacturing process is disclosed. The device includes a semiconductor layer formed on an insulating substrate; source and drain electrodes directly contacting both end portions of the semiconductor layer, respectively; a pixel electrode having an opening portion formed thereon; a first insulating layer formed over the remaining portion of the insulating substrate except for the opening portion; a gate electrode formed on a portion of the first insulating layer over the semiconductor layer; and source and drain regions formed in both end portions of the semiconductor layer.
Abstract:
An organic light emitting display device (OLED) and a method of fabricating the same. The OLED includes: a substrate; a thin film transistor on the substrate and including a source electrode and a drain electrode; a first insulating layer on the substrate; a second insulating layer on the first insulating layer and including a trench; a via hole formed in the trench over the first and second insulating layers and exposing a portion of the source electrode or the drain electrode; a first electrode in the trench and connected to one of the source electrode and the drain electrode through the via hole; a pixel defining layer on the first electrode and having an opening exposing the first electrode; an organic layer in the opening and having at least an organic emission layer; and a second electrode on an entire surface of the substrate having the organic layer.
Abstract:
An organic light emitting diode display device (OLED display device) having uniform electrical characteristics and a method of manufacturing the same. The OLED display device includes: a substrate; a semiconductor layer disposed on the substrate, and including source and drain regions and a channel region formed using metal induced lateral crystallization (MILC); a gate insulating layer for electrically insulating the semiconductor layer; a gate electrode disposed on the gate insulating layer; an interlayer insulating layer for electrically insulating the gate electrode; a thin film transistor (TFT) including source and drain electrodes that are electrically connected to the source and drain regions of the semiconductor layer; a first electrode for a capacitor disposed on a region of the substrate to be spaced apart from the TFT and formed using a metal induced crystallization (MIC); the gate insulating layer for electrically insulating the first capacitor electrode; a second electrode for the capacitor disposed on the gate insulating layer; a planarization layer disposed on the TFT and the capacitor; a first electrode disposed on the planarization layer; a pixel defining layer disposed on the first electrode; an organic layer disposed on the first electrode and the pixel defining layer, and including at least an emission layer; and a second electrode disposed on the organic layer.
Abstract:
An organic light emitting display (OLED) device having a simple process of fabrication and improved lifetime and reliability, and a method of fabricating the same are disclosed. The OLED device comprises: a substrate; a sealing member which seals a plurality of pixels arranged on a pixel region; and a sealing material which bonds the substrate and the sealing member. Each of the pixels includes a thin film transistor disposed on the substrate, an EL device including a lower electrode connected to the thin film transistor, a pixel isolation layer exposing a portion of the lower electrode, an organic layer formed on at least the exposed portion of the lower electrode, and an upper electrode. A pad interconnection line of a pad interconnection region is covered by a first insulating layer, and a pad of a pad region is covered by a second insulating layer so as to expose a portion of the pad. The first insulating layer and the second insulating layer are formed of the same material as a lower layer of the pixel isolation layer.
Abstract:
Provided are a thin film transistor (TFT) panel, a method of fabricating the same, and an organic light emitting display device (OLED) including the same. The TFT panel has a TFT region and a capacitor region. A TFT is formed in the TFT region and a capacitor is formed in the capacitor region. The TFT includes an active layer that includes a source and a drain regions. A gate insulation layer is formed on the active layer, and a gate electrode is formed on the gate insulation layer over the active layer. A source and a drain electrodes are formed over the active layer, and connected to the source and drain regions, respectively. In the TFT region, an interlayer insulation layer is formed between the gate electrode and the source/drain electrodes. In the capacitor region, an interlayer insulation layer is formed between a capacitor lower electrode and a capacitor upper electrode to form a capacitor. The interlayer insulation layers of the TFT region and the capacitor region have different layer structures and have different dielectric constants. Therefore, the capacitor region can have higher capacitance while the TFT region can have lower capacitance to reduce parasitic capacitance.
Abstract:
An organic light emitting display device (OLED) and a method of fabricating the same. The OLED includes: a substrate; a thin film transistor on the substrate and including a source electrode and a drain electrode; a first insulating layer on the substrate having the source and drain electrodes; a second insulating layer on the first insulating layer and including a trench; a via hole formed in the trench over the first and second insulating layers and exposing a portion of the source electrode or the drain electrode; a first electrode in the trench and connected to one of the source electrode and the drain electrode through the via hole; a pixel defining layer on the first electrode and having an opening exposing the first electrode; an organic layer in the opening and having at least an organic emission layer; and a second electrode on an entire surface of the substrate having the organic layer.