摘要:
The present invention relates to an integrated circuit having a MOS capacitor. In one embodiment, a method of forming an integrated circuit comprises forming an oxide layer on a surface of a substrate, the substrate having a plurality of isolation islands. Each isolation island is used in forming a semiconductor device. Patterning the oxide layer to expose predetermined areas of the surface of the substrate. Depositing a nitride layer overlaying the oxide layer and the exposed surface areas of the substrate. Implanting ions through the nitride layer, wherein the nitride layer is an implant screen for the implanted ions. Using the nitride layer as a capacitor dielectric in forming a capacitor. In addition, performing a dry etch to form contact openings that extend through the layer of nitride and through the layer of oxide to access selected device regions formed in the substrate.
摘要:
According to one exemplary embodiment, an NPN bipolar transistor comprises a base layer situated over a collector, where the base layer comprises an intrinsic base region and an extrinsic base region. The NPN bipolar transistor may be, for example, an NPN silicon-germanium heterojunction bipolar transistor. The base layer can be, for example, silicon-germanium. According to this exemplary embodiment, the NPN bipolar transistor further comprises a cap layer situated over the base layer, where a portion of the cap layer is situated over the extrinsic base region, and where the portion of the cap layer situated over the extrinsic base region comprises an indium dopant. The cap layer may be, for example, polycrystalline silicon. According to this exemplary embodiment, the NPN bipolar transistor may further comprise an emitter situated over the intrinsic base region. The emitter may be, for example, polycrystalline silicon.
摘要:
A method of fabricating a SiGe heterojunction bipolar transistor (HBT) is provided which results in a SiGe HBT that has a controllable current gain and improved breakdown voltage. The SiGe HBT having these characteristics is fabricated by forming an in-situ P-doped emitter layer atop a patterned SiGe base structure. The in-situ P-doped emitter layer is a bilayer of in-situ P-doped a:Si and in-situ P-doped polysilicon. The SiGe HBT structure including the above mentioned bilayer emitter is also described herein.
摘要:
The present invention proposes a novel method to fabricate a Bipolar Junction Transistor device. The steps of the present invention include forming a shallow trench isolation structure in a substrate. An oxide layer is formed on the substrate. Subsequently, a polysilicon layer is next formed on the oxide layer, and the polysilicon layer has first type ion. Successively, a polysilicon layer is patterned on the oxide layer. The next step is to perform a second type ion implantation, thereby forming a collector region in the substrate and below the emitter window. The oxide layer is removed inside the emitter window. An expitaxy base is then formed on the polysilicon layer and substrate, thereby forming base region on the collector region, wherein the expitaxy base has the first type ion. After the expitaxy base is formed, a dielectric layer is formed over the expitaxy base. Next, the dielectric layer is etched to form inner spacer on sidewalls of the expitaxy base inside the emitter window. A second polysilicon layer is formed over the expitaxy base and the emitter window, wherein the second polysilicon layer has the second type ion. Finally, an etching process is introduced to etch the second polysilicon layer to form emitter plug. That is self-aligned to the emitter window.
摘要:
An Si/SiGe layer including an Si buffer layer, an SiGe spacer layer, a graded SiGe layer and an Si cap layer is epitaxially grown in a region corresponding to a collector opening while a polycrystalline layer is deposited on the upper surface of a nitride film, and side surfaces of an oxide film and the nitride film. In this case, the Si buffer layer is formed first and then other layers such as the SiGe spacer layer are formed, thereby ensuring non-selective epitaxial growth. Then, a polycrystalline layer is deposited over the nitride film.
摘要:
A semiconductor device and method of fabricating the device. An emitter region is formed self centered and self aligned symmetrically with a base region. Using frontside processing techniques, a collector is formed symmetrically self-aligned with the base region and the emitter region. The collector region may be further formed self-centered with the base region using backside processing techniques. The self-aligned and self-centered symmetric structure virtually eliminates parasitic elements in the device significantly improving the device performance. The device is scalable on the order of approximately 0.1 microns. The method also provides reproduceability and repeatability of device characteristics necessary for commercial manufacture of the symmetric device.
摘要:
A semiconductor chip includes a semiconductor substrate having a rectifying contact diffusion and a non-rectifying contact diffusion. A halo diffusion is adjacent the rectifying contact diffusion and no halo diffusion is adjacent the non-rectifying contact diffusion. The rectifying contact diffusion can be a source/drain diffusion of an FET to improve resistance to punch-through. The non-rectifying contact diffusion may be an FET body contact, a lateral diode contact, or a resistor or capacitor contact. Avoiding a halo for non-rectifying contacts reduces series resistance and improves device characteristics. In another embodiment on a chip having devices with halos adjacent diffusions, no halo diffusion is adjacent a rectifying contact diffusion of a lateral diode, significantly improving ideality of the diode and increasing breakdown voltage.
摘要:
There is provided a semiconductor device in which improvement of drive capacity and miniaturization are made. A P-type transistor is composed of a surface channel type transistor so that a channel length is easily reduced. Thus, improvement of drive capacity and miniaturization are promoted. Further, since a gate insulating film is nitrided, reliability of the gate insulating film is improved and passing of boron contained in a p-type polycrystalline silicon gate electrode toward a channel region can be prevented. A step of forming the gate insulating film, a step of nitriding the gate insulating film, a step of performing thermal treatment using an inert gas, a step of forming a gate electrode on the gate insulating film, and a step of introducing a p-type impurity into the gate electrode are performed. Thus, a surface channel P-type transistor and a buried channel N-type transistor are constructed.
摘要:
A method of forming silicide, especially in a CMOS device in which polysilicon grains in a p-type gate are re-doped with n-type impurities such as As and the like at a critical implantation dose. This increases the grain size of the polysilicon, which also reduces sheet resistance by securing thermal stability in subsequent process steps thereof. The present invention generally includes forming an undoped polysilicon layer, doping the polysilicon layer with p-type impurity ions, doping the p-doped polysilicon layer with ions that increase the grain size of the polysilicon layer by being heated, forming a metal layer on the twice-doped polysilicon layer, and forming a silicide layer by reacting a portion of the twice-doped polysilicon layer with the metal layer.
摘要:
The present invention provides a method for forming a transistor junction in a semiconductor wafer by implanting a dopant material (116) into the semiconductor wafer, implanting a halo material (110) into the semiconductor wafer (102), selecting a fluorine dose and energy to tailor one or more characteristics of the transistor, implanting fluorine into the semiconductor wafer at the selected dose and energy, activating the dopant material using a thermal process and annealing the semiconductor wafer to remove residual fluorine. The one or more characteristics of the transistor may include halo segregation, halo diffusion, the sharpness of the halo profile, dopant activation, dopant profile sharpness, drive current, bottom wall capacitance or near edge capacitance.