Abstract:
A rotor blade for a wind turbine includes a surface having a plurality of aerodynamics feature elements formed therein. The elements for influencing an airflow at the surface during operation of the wind turbine and arrayed in a two dimensional pattern.
Abstract:
A damping element for a wind turbine rotor blade is provided, the damping element comprising a laminate material made of at least one viscoelastic layer and at least one stiff layer adhered to said viscoelastic layer, wherein the damping element is adapted to be attached to a body of the rotor blade so that the at least one viscoelastic layer is in contact with the body of the rotor blade.
Abstract:
A laminate material for damping a vibrational mode of a structure is provided, the laminate material comprising a viscoelastic layer and a stiff constrained layer adhered to the viscoelastic layer, wherein the viscoelastic layer is elastomer based and the constrained layer is made of steel, galvanized steel or aluminum. Furthermore, a damping arrangement for damping at least one vibrational mode of a structure is provided, comprising a laminate material having a soft viscoelastic layer and a stiff constrained layer, wherein the laminate material is provided in the form of at least two longish stripes, the soft viscoelastic layer of the at least two stripes being adhered to a surface of the structure, and the at least two stripes being oriented at an angle of 0° to 180°, preferably 90°, with respect to each other.
Abstract:
A rotor blade for a wind turbine includes a surface having a plurality of aerodynamics feature elements formed therein. The elements for influencing an airflow at the surface during operation of the wind turbine and arrayed in a two dimensional pattern.
Abstract:
A method of controlling at least one wind turbine, comprising selecting a first effective operational curve from a plurality of operational curves, and applying the first effective operational curve to control at least one wind turbine. The operational curves may be operational curve segments.
Abstract:
A lift device for a rotor blade and a method for increasing the lift of a rotor blade for a wind turbine are disclosed. The rotor blade has exterior surfaces defining a pressure side and a suction side extending between a leading edge and a trailing edge. The lift device includes a first aerodynamic surface configured for mounting to the pressure side of the rotor blade, and a second opposing aerodynamic surface configured to interact with wind flowing past the lift device. The lift device has a generally increasing cross-sectional area in a flow direction of the wind. The lift device is configured to increase the lift of the rotor blade.
Abstract:
An entity of the smart card type has an application layer linked to a communication protocol layer. A time manager containing a timer interfaces with the protocol layer. The time manager substantially periodically constructs waiting time extension requests transmitted to a terminal through the protocol layer as long as data are being processed in the application layer. The application layer is thus freed from any time constraint.
Abstract:
A suspension system for suspending an apparatus is disclosed. The suspension system includes at least one suspension element mountable between the apparatus and a support. The at least one suspension element includes a laminate material having at least one metal layer and at least one elastomer layer laminated thereon.
Abstract:
The rotor blade for a wind energy turbine comprising a longitudinal shell defining a root to be connected to a hub of a rotor, a tip, a forward edge and a rearward edge, the shell having a spar including two spar caps connected via at least one shear web arranged between the forward and rearward edges of the shell and extending in the longitudinal direction of the shell, and a structural damping system arranged within the shell and having a pendulum including a dumped sandwich beam and a mass element located at one end of the beam. The beam comprises a sandwich structure including at least three layers comprising at least one damping middle layer arranged between and connected to outer layers of an elastic material. The sandwich beam is connected to the at least one shear web in a cantilevered manner such that the mass element is proximal to the tip of the shell and the beam can be oscillated in a direction towards and away from the forward and rearward edges of the shell.
Abstract:
A gear integrated generator for a wind turbine having a tower, a nacelle, and a hub is described. The gear integrated generator includes: a stator supporting frame having a stator supporting portion, a radially extending portion and a rotor frame supporting portion, wherein the stator supporting frame is stationarily mountable within the nacelle. A rotor frame is rotatably supported on the rotor frame supporting portion of the stator supporting frame. The rotor frame is connected to the hub and a gear, that is driven by the rotor frame. The gear includes a ring gear stationarily mounted to the stator support frame, a carrier gear assembly, and a ring-shaped sun gear. The gear integrated generator further includes: a rotor generator ring support frame rotatably supported and radially positioned outward of the rotor frame supporting portion of the stator supporting frame.