Abstract:
An electronic module interfaces a microcomputer with the fuel injection equipment of a diesel engine so that the microcomputer, acting through the module, exercises control over the fuel injected into the engine. A pulse width modulated fuel deliver control signal issued by the microcomputer is transmitted through the module to energize a proportional solenoid actuator that positions the fuel rack. Rack position is sensed by an eddy current sensor that provides feedback through the module to the microcomputer so that the rack position is closed-loop controlled. The sensor has a measurement coil for measuring rack position and a reference coil for temperature compensation. The two coils are connected in a circuit of the module that produces a pulse width modulated feedback signal which is supplied to the microcomputer in synchronism with the fuel deliver control signal. This latter circuit comprises an L/R monostable for each coil and pulse stretchers that stretch the output pulses from the monostables. The pulse stretchers' outputs are supplied to a gate that develops the feedback signal to the microcomputer.
Abstract:
A system for use with a emergency exit door, comprising: a door opener including a stationary actuator with a movable distal arm for pushing the door open; a door strike mountable to a door frame having an opening to receive a latch of the emergency exit door, the electric door strike including a gate having a locked condition and a release condition; a controller connected to the door opener and the door strike; a remote activator having a triggered condition, which provides a signal to the controller when the remote activator is triggered, to unlock the gate and then the door opener, to open the emergency exit door.
Abstract:
A system for use with a emergency exit door, comprising: a door opener including a stationary actuator with a movable distal arm for pushing the door open; a door strike mountable to a door frame having an opening to receive a latch of the emergency exit door, the electric door strike including a gate having a locked condition and a release condition; a controller connected to the door opener and the door strike; a remote activator having a triggered condition, which provides a signal to the controller when the remote activator is triggered, to unlock the gate and then the door opener, to open the emergency exit door.
Abstract:
A delivery system, comprising the steps of: assigning field personnel to provide a delivery or service at a designated location; traveling to the designated location to provide an on-site delivery or service; remotely actuating an opening mechanism to open an emergency exit door; entering the designated location through the door opening; providing a delivery or service at the designated location; and closing the emergency exit door after the delivery or service has been substantially completed.
Abstract:
A security system is provided for a cargo container having a door. An electronic control unit is provided for monitoring the locked status of the door. The electronic control unit is operably communicable with a remote computer terminal. A first software control program is located within the electronic control unit to monitor the locked status of the door. A second software control program is located within the remote computer terminal and is capable of retrieving activity and functions from the first software control program. A protocol is provided to facilitate communication between the electronic control unit and the remote computer terminal.
Abstract:
A cargo transportation device has a container including a cargo door accessible from the outside for closing the container and being movable from an open position to a closed position. A security system is provided that includes a latching device on the inside of the container, the latching device having a latch, a screw for moving the latch between an open position and a closed position, and a rotary motor for turning the screw. The security system has a latch receiving device, adapted to receive the latch, on the inside of the container. A controller operates a motor to turn a screw in one direction and thereby moves the latch from its unlocked position to its locked position. The controller also can operate the motor to turn the screw in the direction opposite of said one direction thereby moving the latch from its locked position in the latch receiving device to its unlocked position.