Abstract:
A system and method for terrain rendering using a limited memory footprint is presented. A system and method to perform vertical ray terrain rendering by using a terrain data subset for image point value calculations. Terrain data is segmented into terrain data subsets whereby the terrain data subsets are processed in parallel. A bottom view ray intersects the terrain data to provide a memory footprint starting point. In addition, environmental visibility settings provide a memory footprint ending point. The memory footprint starting point, the memory footprint ending point, and vertical ray adjacent data points define a terrain data subset that corresponds to a particular vertical ray. The terrain data subset includes height and color information which are used for vertical ray coherence terrain rendering.
Abstract:
A method and an apparatus are provided for enhancing lock acquisition in a multiprocessor system. A lock-load instruction is sent from a first processor to a cache. In response, a reservation flag for the first processor is set, and lock data is sent to the first processor. The lock data is placed in target and shadow registers of the first processor. Upon a determination that the lock is taken, the lock-load instruction is resent from the first processor to the cache. Upon a determination that the reservation flag is still set for the first processor, a status-quo signal is sent to the first processor without resending the lock data to the first processor. In response, the lock data is copied from the shadow register to the target register.
Abstract:
A system, method, and computer program product are provided for generating display data. The data processing system loads coefficient values corresponding to a behavior of a selected function in pre-defined ranges of input data. The data processing system then determines, responsive to items of input data, the range of input data in which the selected function is to be estimated. The data processing system then selects, through the use of a vector permute function, the coefficient values, and evaluates an index function at the each of the items of input data. It then estimates the value of the selected function through parallel mathematical operations on the items of input data, the selected coefficient values, and the values of the index function, and, responsive to the one or more values of the selected function, generates display data.
Abstract:
A method, system, and program product for creating a child node of a binary space partitioning (BSP) tree node that better approximates the size of an object to be rendered is provided. In one embodiment, a a binary space partitioning tree is created. A rendering process then determines whether either a top node or a child node in a first level of child nodes is a good approximation of the object to be rendered. If not, then the rendering process modifies the binary space partitioning tree to include a new child node having boundaries that are closer to the maximum coordinates of primitives defining the object than are the boundaries of the top node or of the child nodes in the first level of child nodes. This new child node may have a bounding volume that overlaps the bounding volumes of other child nodes in the BSP tree.
Abstract:
A cache manager receives a request for data, which includes a requested effective address. The cache manager determines whether the requested effective address matches a most recently used effective address stored in a mapped tag vector. When the most recently used effective address matches the requested effective address, the cache manager identifies a corresponding cache location and retrieves the data from the identified cache location. However, when the most recently used effective address fails to match the requested effective address, the cache manager determines whether the requested effective address matches a subsequent effective address stored in the mapped tag vector. When the cache manager determines a match to a subsequent effective address, the cache manager identifies a different cache location corresponding to the subsequent effective address and retrieves the data from the different cache location.
Abstract:
A method comprises receiving scene model data including a scene geometry model and a plurality of pixel data describing objects arranged in a scene. The method generates a primary ray based on a selected first pixel data. In the event the primary ray intersects an object in the scene, the method determines primary hit color data and generates a plurality of secondary rays. The method groups the secondary packets and arranges the packets in a queue based on the octant of each direction vector in the secondary ray packet. The method generates secondary color data based on the secondary ray packets in the queue and generates a pixel color based on the primary hit color data, and the secondary color data. The method generates an image based on the pixel color for the pixel data.
Abstract:
An approach is provided to allow virtual devices that use a plurality of processors in a multiprocessor systems, such as the BE environment. Using this method, a synergistic processing unit (SPU) can either be dedicated to performing a particular function (i.e., audio, video, etc.) or a single SPU can be programmed to perform several functions on behalf of the other processors in the system. The application, preferably running in one of the primary (PU) processors, issues IOCTL commands through device drivers that correspond to SPUs. The kernel managing the primary processors responds by sending an appropriate message to the SPU that is performing the dedicated function. Using this method, an SPU can be virtualized for swapping multiple tasks or dedicated to performing a particular task.
Abstract:
A method for computing includes executing a program, including multiple cacheable lines of executable code, on a processor having a software-managed cache. A run-time cache management routine running on the processor is used to assemble a profile of inter-line jumps occurring in the software-managed cache while executing the program. Based on the profile, an optimized layout of the lines in the code is computed, and the lines of the program are re-ordered in accordance with the optimized layout while continuing to execute the program.
Abstract:
A computer implemented method and system for optimizing thermal performance of a computer system. An identification of a set of processor cores associated with the computer system is made and a thermal index is requested for each of the set of processor cores to form a set of thermal indexes. Proximity information and conductive property information associated with the set of processors is loaded and software is mapped to execute on an optimal processor core form the set of processor cores based the set of thermal indexes, proximity information, and conductive property information.
Abstract:
Processor resources are partitioned based on memory usage. A compiler determines the extent to which a process is memory-bound and accordingly divides the process into a number of threads. When a first thread encounters a prolonged instruction, the compiler inserts a conditional branch to a second thread. When the second thread encounters a prolonged instruction, a conditional branch to a third thread is executed. This continues until the last thread conditionally branches back to the first thread. An indirect segmented register file is used so that the “return to” and “branch to” logical registers within each thread are the same (e.g., R1 and R2) for each thread. These logical registers are mapped to hardware registers that store actual addresses. The indirect mapping is altered to bypass completed threads. When the last thread completes it may signal an external process.