Abstract:
This invention relates to compounds of the general formula: in which the variable groups are as defined herein, and to their preparation and use. In particular, the compounds include embodiments in which Ring T is an imidazo[1,2-b]pyridazine ring system, Rings A and B are each aryl and L1 is —C(O)NR1— or —NR1C(O)—. Uses for the compounds and for compositions containing them include treatment of cancer and other diseases mediated by protein kinases.
Abstract:
This invention relates to compounds of the general formula: in which the variable groups are as defined herein, and to their preparation and use.
Abstract:
Caspase activity and apoptosis are promoted using active, dimeric Smac peptide mimetics of the general formula M1-L-M2, wherein moieties M1 and M2 are monomeric Smac mimetics and L is a covalent linker. Target cancerous or inflammatory cells are contacted with an effective amount of an active, dimeric Smac mimetic, and a resultant increase in apoptosis of the target cells is detected. The contacting step may be effected by administering to a pharmaceutical composition comprising a therapeutically effective amount of The compoundic mimetic, wherein the individual may be subject to concurrent or antecedent radiation or chemotherapy for treatment of a neoproliferative pathology.
Abstract:
The present application is directed to retainers and methods of retaining a developer unit within an image forming device. One embodiment may include positioning a retainer attached to a frame at a first position with a second end of the retainer positioned away from the developer unit. A toner cartridge may be inserted into the image forming device in a vertical direction and contact against retainer. The toner cartridge may laterally move the retainer relative to the frame from the first position to a second position with the second end positioned to prevent removal of the developer unit from the frame. Another embodiment features a system to retain a developer unit in an image forming device. The system may include a frame configured to receive the developer unit and the toner cartridge. A retainer may be movably attached to the frame and include a first end with a ramped surface, and a second end spaced away from the first end. The retainer may be movable between a first position prior to insertion of the toner cartridge with the second end positioned away from the developer unit, and a second position after insertion of the toner cartridge with the second end positioned to prevent removal of the developer unit from the frame.
Abstract:
A method for optimizing the capacity of a forward link in a cellular telecommunications network involves dynamically setting the minimum gain level on the forward link for each mobile station, based each mobile station's individual performance. The cellular network has one or more base stations and a mixed population of single-diversity mobile stations and dual-diversity mobile stations. In communicating with a particular mobile station, the gain level of the transmission over the forward link is monitored at the base station. The base station also monitors the reverse link for a power measurement report message (“PMRM”) sent by the mobile station. If the gain level stays at or close to a minimum gain level for a certain time period, and if no PMRM″s are received during that time period, then the base station reduces the minimum gain level by a set amount. The reduction in the minimum gain level can be triggered based on other factors, such as the forward link frame error rate.
Abstract:
A system and a method for reverse link power control in a wireless communications network generates power adjust commands for mobiles being served by a network base station in a centralized manner by considering overall system performance when an increased interference condition is detected. In one implementation, a base station power control processor adopts a modified reverse inner loop power control (RILPC) and/or a reverse outer loop power control (ROLPC) algorithm when an increased interference condition is detected. According to the modified RILPC algorithm, a percentage of power-up adjust commands which would normally be generated when Eb/No measurements for served mobiles do not meet target Eb/No levels are converted to power down-adjust commands, thereby forcing some mobiles to reduce transmit power, at least temporarily, to constrain interference. When the increased interference condition persists, the percentage of power-up adjust commands which are converted to power-down commands may be changed. According to the modified ROLPC algorithm, the power control processor adjusts target Eb/No levels in a centralized manner based on an overall system state so that only a limited number of target Eb/No levels are allowed to increase when frame erasures occur. By preventing a percentage of target Eb/No level increases, at least temporarily, when frame erasures occur, a percentage of power up-adjust commands are avoided. Therefore, a similar effect to that achieved by the modified RILPC is achieved. In accordance with still a further implementation of the present invention, the modified RILPC algorithm may be used in combination with the modified ROLPC algorithm to provide greater resistance to increased interference conditions.
Abstract:
A method for link quality control in a wireless communications network includes determining whether an indicator of link imbalance exists among a plurality of base stations associated with a mobile unit, and implementing a control action to help prevent at least one of fading or signal cutoff between the mobile unit and at least one of the base stations, if the indicator indicates that link imbalance exists.
Abstract:
In a method for minimizing reverse link power control overshoot in a wireless communications system, the output power of a mobile station is detected to determine whether it falls outside a dynamic range of the mobile station. If outside the dynamic range, a new output power falling within the dynamic range is calculated and set, and the mobile station is instructed to transmit at the new output power.
Abstract:
A method for determining the initial power to be allocated to a secondary channel having a desired data rate. An SNR setpoint is first calculated where such setpoint is based on the SNR setpoint of the associated primary channel and system offset values. The initial power is then calculated based on the calculated setpoint.
Abstract:
A method of making a pool liner, said pool liner having a floor section, a wall section and substantially invisible seams, said method comprising the steps of: providing a plurality of floor sheets wherein each sheet of said plurality of floor sheets has an edge; arranging said floor sheets in a pre-determined direction such that at least one edge of one sheet of said first plurality of floor sheets overlaps an adjacent edge of one sheet of said first plurality of floor sheets thereby creating a floor sheet to floor sheet intersection; heat welding said overlapping floor sheets at said floor sheet to floor sheet intersection; providing at least one wall sheet where said at least one wall sheet has an edge; placing said at least one wall sheet generally perpendicularly relative to said plurality of floor sheets; overlapping said at least one wall sheet with said floor sheets thereby creating a floor sheet to wall sheet intersection; and heat welding said at least one wall sheet with overlapping floor sheets at said floor to wall intersection.