Abstract:
An apparatus for emitting x-rays comprises a housing which contains an anode having an electron receiving surface and a cathode having an electron emitting surface. A cable couples the anode to a source of high voltage. An optical fiber secured to the cable has a proximal end coupled to a source of optical energy and a distal end configured to direct the optical energy onto the cathode's electron emitting surface. The cathode emits electrons which strike the anode to create x-ray radiation.
Abstract:
A delivery device for percutaneously deploying a stented prosthetic heart valve. The device includes a delivery capsule and a recapture sheath. The capsule is configured to compressively retain the prosthesis. The recapture sheath includes a funnel segment having a plurality of circumferentially spaced runners and a polymer overlay. The runners are attached to a shaft and terminate at a distal tip. The overlay surrounds the runners, and is bonded to the shaft but not to at least the tips. The funnel segment is transitionable from a normal condition to an expanded condition forming a funnel shape with a distally increasing diameter, and self-transitionable back toward the normal condition. The funnel segment facilitates sliding of the capsule over a partially deployed region of the prosthesis as part of a recapturing operation. The runners provide columnar strength, with the overlay controlling a shape of the funnel segment.
Abstract:
A delivery system for an endoprosthesis includes a spindle having a spindle body and spindle pins extending radially outward from the spindle body. The delivery system further comprises a tip comprising a sleeve, the spindle pins extending from the spindle body toward the sleeve. The endoprosthesis includes a proximal anchor stent ring having spindle pin catches and anchor pins. The spindle pins of the spindle extend into the spindle pin catches and the sleeve radially constrains the anchor pins.
Abstract:
A delivery device for percutaneously deploying a stented prosthetic heart valve. The device includes a delivery capsule and a recapture sheath. The capsule is configured to compressively retain the prosthesis. The recapture sheath includes a funnel segment having a plurality of circumferentially spaced runners and a polymer overlay. The runners are attached to a shaft and terminate at a distal tip. The overlay surrounds the runners, and is bonded to the shaft but not to at least the tips. The funnel segment is transitionable from a normal condition to an expanded condition forming a funnel shape with a distally increasing diameter, and self-transitionable back toward the normal condition. The funnel segment facilitates sliding of the capsule over a partially deployed region of the prosthesis as part of a recapturing operation. The runners provide columnar strength, with the overlay controlling a shape of the funnel segment.
Abstract:
A stent graft includes a stent graft material of tubular shape and annular shaped stent elements coupled to the stent graft material. The stent graft further includes hooked fixation elements, having hook-end portions and coupling-end, circumferentially spaced about an annular shaped spring attachment element, and coupled to the stent graft at apexes of the spring attachment element. Before deployment the hook-end portions of the apexes of the attachment element and the hooked fixation elements attached thereto are compressed within the space bounded by the interior and exterior sides of the spring attachment element and angled laser cut strut inner surfaces under each apex of the spring attachment element are cut at an angle to cause apex and hook rotation at expansion and deployment. At deployment, the apex and hook-end portions rotate outwardly from the stent graft, partially penetrating the body vessel walls in which the stent graft is deployed and actively fixing the stent graft at the position of deployment.
Abstract:
A tubular prosthesis comprises a tubular graft; and an undulating stent having a plurality of apexes, a first end defined at least in part by a first group of the apexes, and a second end defined at least in part by a second group of the apexes, the first group of apexes being pivotally attached to the tubular graft so as to form a plurality of circumferentially arranged hinges about which the stent can pivot so that the second group of apexes can move between a position where they are inside the tubular graft and a position where they are outside the tubular graft. In one embodiment a tubular prosthesis comprises a tubular graft having a first end margin, a second end margin and a central portion therebetween; and an undulating stent having a plurality of apexes, a first end defined at least in part by a first group of the apexes, and a second end defined at least in part by a second group of the apexes, the undulating stent being secured to the tubular graft in a manner such that it can be inverted to extend generally in the same direction as the tubular graft with one end thereof forming an end of said tubular prosthesis and pointing away from the central portion of the tubular graft.
Abstract:
An anchoring balloon of an anchoring balloon catheter is advanced through the branch vessel to be adjacent to the main stent graft within a main vessel. The anchoring balloon is inflated to center an inner member of the anchoring balloon catheter within the branch vessel and to anchor the anchoring balloon within the branch vessel. A needle assembly is advanced to pierce the graft material of the main stent graft with a needle forming a needle hole in the graft material. A dilator assembly is advanced to dilate the needle hole with a dilator.
Abstract:
A braided flange branch graft formed of a braided super elastic memory material includes a neck between an inner flange and an outer flange. The neck is positioned in a side opening in a sidewall of a main stent graft and the inner flange and outer flange are deployed on opposite sides of the sidewall. The inner flange and the outer flange have a diameter greater than a diameter of the side opening in the sidewall of the main stent graft. Thus, the sidewall of the main stent graft is sandwiched between the inner flange and the outer flange securely and simply mounting the braided flange branch graft to the main stent graft. The braided flange has a substantially unobstructed fluid communication passage therethrough. Further, when stretched into a substantially cylindrical shape for delivery, the braided flange branch graft has a small delivery profile and is extremely flexible.
Abstract:
A positionable stent-graft delivery system includes a stent-graft, a tip capture mechanism radially constraining a proximal portion of an anchor stent ring of the stent-graft, and a positioning mechanism for positioning the tip capture mechanism. The positioning mechanism includes tensioner guides and cords. To position the tip capture mechanism, a cord is retracted through the respective tensioner guide, e.g., by the physician. Retraction of the cord, in turn, pulls the tip capture mechanism towards a distal end of the tensioner guide. In this manner, the stent-graft is readily repositioned.
Abstract:
A proximal anchor stent ring of an endoprosthesis includes proximal apexes, distal apexes, struts extending between the proximal apexes and the distal apexes, and anchor pins. The struts, the proximal apexes, and the distal apexes define an imaginary cylindrical surface. A pair of the anchor pins is located on the struts adjacent each of the proximal apexes, the anchor pins extending inwards from inside surfaces of the struts and protruding from the struts radially outward from the cylindrical surface. By locating the anchor pins inwards, the delivery profile of the proximal anchor stent ring is minimized.