Abstract:
A method for designing a system on a target device is disclosed. Domains and sub-domains in the system are identified. A sub-domain is divided into a plurality of chunks. Slacks for the chunks are computed in parallel. Other embodiments are described and claimed.
Abstract:
A skew generator unit includes a delay chain. The delay chain is coupled to a clock line that transmits a clock signal. The delay chain generates a skewed clock signal having a unit of delay from the clock signal. The skew generator unit also includes a selector. The selector is coupled to the delay chain and the clock line and may select one of the clock signal and the skewed clock signal.
Abstract:
A high efficiency PLD architecture having adjacent logic elements that can be selectively combined to perform higher order logic functions than can be performed alone by a single logic element. The programmable logic device includes a logic block having a first logic element including a first look up table. The first look up table includes a first pair of sub-function generators and is capable of implementing logic functions of a first order. The logic block also includes a second logic element having a second input look up table including a second pair of sub-function generators. Programmable sharing circuitry is also included in the logic block. The programmable sharing circuitry selectively couples the first pair of sub-function generators and the second pair of sub-function generators so that the first logic element is capable of performing logic functions of either (i) the first order, or (ii) a second order, wherein the second order is higher than the first order.
Abstract:
A programmable logic device (PLD) includes a core region having a plurality of logical array blocks (LABs). Each one of the plurality of logical array blocks include a plurality of logic elements capable of communicating with each other through interconnections defined within each logical array block. The logic elements include a look up table (LUT), wherein a LUT of a first logic element and a LUT of a second logic element share a register. In one embodiment, more than two logic elements may share a register. Thus, the embodiments provide for the ability to vary sequential logic, e.g., registers, instead of rigidly fixing the sequential logic and consequently the ratio of combinatorial logic to sequential logic.
Abstract:
A CLB-based PLD with logic cells having improved logic, register, arithmetic, logic packing and timing functions and capabilities is disclosed. The CLBs of the PLD are arranged in rows and columns of an array and are interconnect by a plurality of interconnect lines. Each of the plurality of CLBs has a first slice of logic cells and a second slice of logic cells arranged in a first column and a second column. First and second carry chains are provided between each of the logic cells of each column. At least one of the logic cells includes one or more Look Up Tables for implanting logic functions on a set of inputs provided to the one logic cell and an arithmetic logic circuit configured to receive a carry-in signal and to generate a carry-out signal forming part of the first carry chain. In one embodiment, the logic cell further includes a first output register and a second output register and the set of outputs generated by the logic cell are partitioned among the first output register and the second output register. In another embodiment, an output of one of the registers is provided as an input to one of the Look Up Tables of the cell through a register feedback connection. In yet another embodiment, the set of inputs provided to a first and a second of the Look Up Tables are different, enabling a higher degree of logic efficiency or “packing” by enabling each cell to perform logic functions on two different sets of inputs as opposed to only the same set of inputs. Finally, in another embodiment, the arithmetic logic circuit is capable of generating two SUM output signals.
Abstract:
Hybrid adder circuitry is provided for integrated circuits such as programmable integrated circuits. The hybrid adder may combine the capabilities of multiple adder architectures. Hybrid adders may include carry select and carry ripple adder circuits. The adder circuits may be combined using a carry look-ahead architecture. Adder functionality may be implemented using the resources of logic regions on the programmable integrated circuits. Each logic region may include combinatorial logic such as look-up table logic and register circuitry. The hybrid adder circuitry may receive input words to be added from the combinatorial circuitry and may produce corresponding arithmetic sum output signals to the register circuitry.
Abstract:
Techniques are provided for routing signals to and from input/output pads on a programmable chip that reduce signal delay times. A programmable routing structure is provided that is dedicated to routing signals to and from the input/output (I/O) pads. The programmable routing structure can include long conductors that transmit signals across the chip quickly without the delay encountered in shorter routing conductors. Signals can be routed to and from the I/O pads through vertical and horizontal dedicated routing conductors that bypass global routing conductors. The dedicated I/O routing structure allows signals to be driven onto the chip and off chip more quickly can be achieved through standard programmable routing structures. The dedicated I/O routing structure can be depopulated to reduce the number of programmable connections between the individual conductors, decreasing die area requirements.
Abstract:
An integrated circuit (IC) includes a substrate that is common to the IC and variants of the IC. The IC also includes a first set of interconnect layers fabricated above the substrate. The first set of interconnect layers is used to couple programmable interconnect of the IC to a first circuit in the substrate. The IC further includes a second set of interconnect layers fabricated above the substrate. The second set of interconnect layers is used to differentiate features of the IC from variants of the IC by selectively coupling the programmable interconnect to a second circuit in the substrate.
Abstract:
Hybrid adder circuitry is provided for integrated circuits such as programmable integrated circuits. The hybrid adder may combine the capabilities of multiple adder architectures. Hybrid adders may include carry select and carry ripple adder circuits. The adder circuits may be combined using a carry look-ahead architecture. Adder functionality may be implemented using the resources of logic regions on the programmable integrated circuits. Each logic region may include combinatorial logic such as look-up table logic and register circuitry. The hybrid adder circuitry may receive input words to be added from the combinatorial circuitry and may produce corresponding arithmetic sum output signals to the register circuitry.
Abstract:
An integrated circuit may include programmable logic regions coupled in parallel to an interconnect bus. Multiplexing circuitry may be interposed between the programmable logic regions and the interconnect bus. The multiplexing circuitry may be formed from multiplexing circuits formed in a cascade structure. The multiplexing circuitry may dynamically receive control signals that determines which programmable logic region is allowed to drive output signals onto the interconnect bus. Alternatively, each programmable logic region may have an associated output circuit that is coupled to the interconnect bus. The output circuits may be dynamically controlled by control circuitry. The output circuits may receive control signals from the control circuitry that selectively enable and selectively disable the output circuits. The output circuits may be formed with logic circuitry that ensures that the interconnect bus is not simultaneously driven by the output circuits.