Abstract:
Disclosed is a wide-band dispersion controlled optical fiber. The optical fiber enables the use of optical signals in various wavelength regions in a wavelength division multiplexing mode communication network by controlling the position of the zero dispersion wavelength, and enables long distance transmission by controlling dispersion slope and bending loss. Furthermore, there is an advantage in that the optical fiber enables not only short distance transmission but also middle/long distance transmission using a single type of optical fiber because the optical fiber is controlled to have negative dispersion values in the O-band wavelength region and positive dispersion values with small deviations in the C-band and L-band wavelength regions.
Abstract:
Disclosed is a high efficiency burner and an apparatus for over-cladding an optical fiber pre-form using the same. The high efficiency burner heating an optical fiber pre-form includes burner covers, burner bodies arranged between the burner covers, and fuel dischargers arranged in at least two rows between the burner bodies, and divided by a partition, respectively.
Abstract:
A dispersion control fiber and a method of manufacturing a large size preform. The dispersion control fiber includes a core composed of SiO2, GeO2, and P2O5, and a cladding composed of SiO2, GeO2, P2O5, and Freon. The P2O5 content is selected not to exceed 10% total weight of a compound composing the core. The method of manufacturing a large size perform for a dispersion control fiber by an MCVD process includes depositing SiO2, GeO2, P2O5, and Freon in an inner periphery of a deposition tube to form a cladding layer, and depositing SiO2, GeO2, and P2O5 on an inner periphery of the cladding layer to form a core layer.
Abstract translation:一种分散控制纤维及其制造方法。 色散控制光纤包括由SiO 2,GeO 2和P 2 O 5组成的芯和由SiO 2,GeO 2,P 2 O 5和氟利昂组成的包层。 选择P2O5含量不超过构成核心的化合物的总重量的10%。 通过MCVD工艺制造用于分散控制光纤的大尺寸的方法包括在沉积管的内周中沉积SiO 2,GeO 2,P 2 O 5和氟利昂以形成包覆层,并将SiO 2,GeO 2和P 2 O 5沉积在 包层的内周,形成芯层。
Abstract:
Disclosed is a multimode optical fiber having a structure to reduce scattering loss which includes a core divided into a central region having the optimal refractive index according to an optimal core shape index minimizing the scattering loss of the multimode optical fiber, and a peripheral region having the refractive index lower than that of the central region; and a cladding enclosing the core and having the refractive index lower than the lowest refractive index of the core.
Abstract:
An optical fiber having a multi-step core structure, and a method of fabricating the same, are provided. The optical fiber includes a central core having a predetermined radius a1 from an central axis and a refractive index n1, a first outer core having a radius a2 and a refractive index n2 smaller than the refractive index n1 and surrounding the central core, a second outer core having a radius a3 and a refractive index n3 smaller than the refractive index n2 and surrounding the first outer core, and a cladding having a radius a4 and a refractive index n0 smaller than the refractive index n3 and surrounding the second outer core, i.e., a1 n2>n3>n0. The diameter of the core is increased by making the refractive index distribution of the core multi-stepped, thus providing easy fabrication. The optical fiber has a low dispersion value in a 1550 nm wavelength, thus making superspeed long distance transmission possible.
Abstract:
There are provided an optical fiber rod overcladding apparatus and method, and an optical fiber drawing method. In the preform rod overcladding method, a preform rod is clamped in a top chuck and leveled, and a glass tube is mounted in a bottom chuck and leveled. The preform rod is coaxially inserted into a glass tube. Then, the glass tube is preheated by the furnace and heated by the burner until the glass tube reaches a softening point. The preform rod is completely sealed in the glass tube by sucking air in a clearance between the preform rod and the glass tube by application of a negative vacuum pressure. Thus, a preform is completed.
Abstract:
Disclosed is a method for fabricating an optical fiber preform. The method includes: (a) growing a first soot preform on a starting member along a lengthwise direction of the starting member by a soot deposition; (b) dehydrating the first soot preform; (c) sintering the dehydrated first soot preform, to obtain a first glassed optical preform; and (d) elongating the first optical fiber preform by heating the first optical fiber with a heat source that excludes hydrogen, wherein the first glassed optical fiber is elongated by means of only a heat source that excludes the use of hydrogen.
Abstract:
Disclosed is a vapor axial deposition apparatus. The vapor axial deposition apparatus includes a first torch, a second torch, a temperature measuring unit and a controller unit. The first torch deposits soot on a distal end of a soot preform aligned with a vertical axis to thereby grow a core. The second torch deposits soot on an outer circumferential surface of the core to thereby grow a clad. The temperature measuring unit detects the temperature distribution of an end portion of the soot preform along the vertical axis. The controller unit determines first and second relative maximum temperatures T1 and T3, and relative minimum temperature T2 between T1 and T3 in the detected temperature distribution, and controls T1 to be within a predetermined range and the greater one of the difference (T1−T2) and (T3−T2) to not exceed a predetermined temperature.
Abstract:
Disclosed is an optical fiber comprising a center core which forms a passageway for transmitting optical signals and has a refractive index N1, and a cladding which encloses the center core and has a refractive index N0. The optical fiber further comprises an upper core, which has a distribution of refractive indices increased starting from a refractive index N2 (>N0) at its outer circumference to the refractive index N1 at its internal circumference, and a minutely depressed refractive index region, which is interposed between said upper core and cladding and has a refractive index N3. The refractive index N3 is lower than the refractive index N0.
Abstract translation:公开了一种光纤,包括中心芯,其形成用于传输光信号并具有折射率N 1的通道,以及包围中心纤芯并具有折射率N 0的包层 SUB>。 光纤还包括上芯,其具有从其外圆周处的折射率N 2(> N O 2)开始的折射率分布,折射率分布从折射率N 2 在其内圆周处的折射率N 1 N和折射率N 3 3以下的微小凹陷的折射率区域。 折射率N 3 3低于折射率N 0 O 3。
Abstract:
A dispersion control fiber and a method of manufacturing a large size preform are provided. In one embodiment, the dispersion control fiber comprises a core composed of SiO2, GeO2, P2O5 and Freon, and a cladding composed of SiO2, GeO2, P2O5, and Freon. The P2O5 content is selected not to exceed 10% of the total weight of a compound composing the core. An embodiment of the method of manufacturing a large size preform for a dispersion control fiber by an MCVD process comprises depositing SiO2, GeO2, P2O5, and Freon in an inner periphery of a deposition tube to form a cladding layer, and depositing SiO2, GeO2, P2O5 and Freon on an inner periphery of the cladding layer to form a core layer.
Abstract translation:提供了一种分散控制纤维及其制造方法。 在一个实施方案中,色散控制光纤包括由SiO 2,GeO 2,P 2 O 5和氟利昂组成的芯和由SiO 2,GeO 2,P 2 O 5和氟利昂组成的包层。 选择P2O5含量不超过构成核心的化合物总重量的10%。 通过MCVD工艺制造用于分散控制纤维的大尺寸预制件的方法的一个实施方案包括在沉积管的内周中沉积SiO 2,GeO 2,P 2 O 5和氟利昂以形成包覆层,并且沉积SiO 2,GeO 2, P2O5和氟利昂在包覆层的内周上形成核心层。