Abstract:
A method and apparatus for controlling operation of a redox flow battery. The method of controlling operation of a redox flow battery includes obtaining a diffusivity of anolyte ions with respect to a separator, obtaining a diffusivity of catholyte ions with respect to the separator, determining electrolyte diffusivities depending upon a state of charge value of the redox flow battery based on the diffusivity of the anolyte ions and the diffusivity of the catholyte ions, determining a minimum state of charge value and a maximum state of charge value of the redox flow battery based on the electrolyte diffusivities, and setting operating conditions of the redox flow battery based on the minimum state of charge value and the maximum state of charge value. The method and apparatus for controlling operation of a redox flow battery can prevent reduction in capacity of the redox flow battery.
Abstract:
The Si-block copolymer core-shell nanoparticles include: a Si core; and a block copolymer shell including a block having relatively relatively high affinity for Si and a block having relatively low affinity for Si and forming a spherical micelle structure around the Si core. Since the Si-block copolymer core-shell nanoparticles exhibit excellent dispersibility and stability in a mixed solution including the same, the Si-block copolymer core-shell nanoparticles are easily applied to an anode active material for lithium secondary battery by carbonization thereof. In addition, since the anode active material for lithium secondary battery using the Si-block copolymer core-shell nanoparticles includes carbonized Si-block copolymer core-shell nanoparticles and pores, the anode active material has long lifespan, high capacity and high energy density, and the block copolymer shell of the carbonized Si-block copolymer core-shell nanoparticles can improve lifespan of lithium secondary battery by buffering volumetric change thereof during charge and discharge.
Abstract:
Provided herein is a system for manufacturing a core of a vacuum insulation panel, the system comprising: a plurality of molding cast parts disposed along one direction, and providing a molding space for core material to be supplied and press-molded; a plurality of raw material suppliers distanced from one another, and supplying core material to the molding space; a press-molder disposed between the raw material suppliers, and receiving the molding cast part where the core material is supplied through the raw material supplier, and pressing the molding space; and a carrier transferring the molding cast part after the core material is supplied by the raw material supplier and the molding space is press-molded by the press-molder.
Abstract:
Provided herein is a method for molding a core of a vacuum insulation panel, the method comprising: supplying core material into a molding space of a molding apparatus comprising a pair of molding plates facing each other and providing a molding space where a core is to be molded, and a molding cast closing the molding space from outside; press-molding a core material by moving the pair of molding plates along their approaching direction to press the core material; moving the press-molded core outside the molding cast while maintaining a certain distance between the pair of molding plates; and discharging the molded core.
Abstract:
The present invention provides a method for preparing a negative electrode material for a secondary battery, comprising a high-quality nano-silicon-carbon composite material formed by uniformly and densely coating the surface of nano-silicon particles with a pitch. Further, the present invention provides a negative electrode material, for a secondary battery, prepared by the method for preparing the negative electrode material for a secondary battery, and a secondary battery comprising same, in order to enhance the initial discharge capacity, initial efficiency, and life characteristics of the secondary battery.
Abstract:
The present invention relates to a method for purifying hydrogen peroxide, and more particularly, to a method including purifying a crude product of hydrogen peroxide using a primary purification system, and purifying a primarily purified hydrogen peroxide solution using a secondary purification system. One of the primary purification system and the secondary purification system includes an electrodeionization system, and the other one of the primary purification system and the secondary purification system includes at least one from among a distillation system, a resin system, a reverse osmosis system, and a combination system thereof.
Abstract:
The present invention relates to a method for separating and collecting single aggregates from fumed silica, and a method for classifying a shape of the collected single aggregates, and more specifically, includes preparing a slurry in which fumed silica is dispersed in water; aerosolizing the slurry; and collecting single aggregates of the finned silica in the aerosol using the electric field.
Abstract:
Provided is a device including an acquisition unit configured to obtain a time taken for a voltage level of a battery in a charge mode to change for each of a plurality of voltage sections, and a prediction unit configured to predict a state of health (SOH) of the battery based on ratio information determined by comparing the time obtained for each of the plurality of voltage sections with a reference time for each of the plurality of voltage sections. When the time taken for some voltage sections of the plurality of voltage sections is obtained by the acquisition unit, the prediction unit corrects the predicted SOH of the battery based on the time taken for the voltage level of the battery in a discharge mode to change.
Abstract:
The present invention generally relates to a method for preparing a carbon black of high resistivity through the surface treatment of the carbon black which exhibits conductivity, and a carbon black prepared by this method.
Abstract:
The present invention relates to a packing system including a transporting device, an erecting device, and a guiding device. The packing system is configured to reduce the number of a packing process and to simplify the packing process, thereby improving production efficiency, compared with a conventional system. The packing system is configured to minimize wrinkling of a packing material and to adjust position of ends of the packing material in a way that the packing material is always supplied to a predetermined position, thereby reducing a failure rate of a packed product. It is possible to pack various sizes of packing target objects using a single system.