Abstract:
A user equipment, UE, (20) determines a mobility state of a Wi-Fi access point, AP, as one of a moving mobility state and a non-moving mobility state along with control information relating to UE cell (re-)selection and/or handover behavior based on the determined mobility state of the Wi-Fi access point, AP. The UE then controls its cell (re-)selection and/or handover behavior in relation to the Wi-Fi access point, AP based on the determined control information. In a preferred embodiment, the UE can communicate with a cellular base station, BS, and with the Wi-Fi access point, AP. The UE detects the Wi-Fi AP, determines that the Wi-Fi AP is moving based on a moving AP indication, and controls cell (re-Selection and/or handover behavior of the UE based on the determination that the Wi-Fi AP is moving along with other information.
Abstract:
A mobility state of a mobile relay node is determined as one of three or more different mobility states. The mobile relay node may determine the mobility state itself or based on received information from another network node. Control information is determined based on the determined mobility state of the mobile relay node and an action is then performed or initiated based on the determined control information. The tree different mobility states may include moving, standing, and at least one additional mobility state. Example additional mobility states of the mobile radio node include: departing, arriving, or temporarily stopped.
Abstract:
A method and a device for processing data in a wireless network are provided, wherein a relay node is served by a base station; and wherein the relay node is assigned at least one identification code such that collisions with identification codes of neighboring relay nodes or neighboring base stations are reduced, avoided or solved. Furthermore, a communication system is suggested including at least one such device.
Abstract:
Systems and techniques for avoiding inefficiencies resulting from failed handover attempts. A base station selects one or more mobility management entity (MME) pools for assignment to a relay node, with the selection being performed so as to minimize or eliminate handover attempts requiring that a target device support a particular MME pool when the MME pool is not supported by the MME. A base station selects, when communicating with a relay node, a subset of the MME pools that it supports and assigns the subset to the base station. UEs served by the relay node are assigned the MME pool or MME pools assigned to the relay node. The relay node is informed of the MME pools supported by one or more neighbor nodes and, when attempting a handover to a neighbor node, attempts an X2 handover only to neighbor nodes supporting an MME pool assigned to the relay node.
Abstract:
A telecommunications node (28) comprises a communication interface (36) and a parameter controller (40). The node (28) acquires timing advance (TA) information and angle of arrival (AoA) information through the communication interface (36). The timing advance (TA) information and angle of arrival (AoA) information are based on uplink signals received over a radio interface (32) from one or more wireless terminals (30) that are involved or have been involved in handover. The parameter controller (40) uses the timing advance (TA) information and the angle of arrival (AoA) information to make a determination of size and shape of a cell of a radio access network.
Abstract:
A technique including transmitting via a wireless interface a handover request message relating to handover of a communication device from an intermediate access node to a new access node, wherein the handover request message identifies a plurality of access nodes as candidates for the new access node.
Abstract:
Home base station nodes (110) that support multi-carrier operation are disclosed. In some embodiments, two carrier signals are transmitted on different frequencies to one or more user devices that support multi-carrier operation, and different global cell identifiers are broadcast on the two carrier signals. Control messages are sent and received for both of the two carrier signals over a single control-plane interface between the home base station (110) and either a core network node (170) or a home base station gateway (120).
Abstract:
User equipments UEs send their buffer status reports and data to a relay node RN. The RN stores the data in actual buffers per radio bearer group RBG, and stores the UEs buffer occupancies in virtual buffers per RBG. The RN then sends its own status report to the controlling eNBr with the actual buffer occupancy and information about the virtual buffer occupancy. This enables the eNBr to know in advance the volume of data incoming to the RN's actual buffers, as well as the current occupancy of those buffers, so as to better allocate radio resources. Further, the RN can take soundings of the uplink channels between UEs and the RN, which are then aggregated across the RBRs and sent to the eNBr as a special UL CQI report. The eNBr is thereby enabled to anticipate how soon the data in the UE buffers will appear in the RN's actual buffers (from the additional information of average UL CQI info and virtual buffer status), and thus better allocate the RBRs to be used for the different RBGs in the RN-eNB link as well as the optimal set of RBRs to the UE-RN link, which the RN can redistribute among the UEs that it is serving.
Abstract:
There are provided measures for load balancing in relay-enhanced access networks with a relay device and multiple access devices, said measures exemplarily including the setting of multiple links between a backbone device of a backbone network and said multiple access devices, and a management of resource allocation of said multiple links between said backbone device and said multiple access devices in accordance with resource information of said multiple access devices indicating resource availability and resource assignment of said multiple access devices for establishing multiple connections between said backbone device and said relay device via said multiple access devices.
Abstract:
Home base station nodes (110) that support multi-carrier operation are disclosed. In some embodiments, two carrier signals are transmitted on different frequencies to one or more user devices that support multi-carrier operation, and different global cell identifiers are broadcast on the two carrier signals. Control messages are sent and received for both of the two carrier signals over a single control-plane interface between the home base station (110) and either a core network node (170) or a home base station gateway (120).