摘要:
A drilling system for drilling subsea wellbores includes a tubing-conveyed drill bit that passes through a subsea wellhead. Surface supplied drilling fluid flows through the tubing, discharges at the drill bit, returns to the wellhead through a wellbore annulus, and flows to the surface via a riser extending from the wellhead. A flow restriction device positioned in the riser restricts the flow of the returning fluid while an active fluid device controllably discharges fluid from a location below to just above the flow restriction device in the riser, thereby controlling bottomhole pressure and equivalent circulating density (“ECD”). Alternatively, the fluid is discharged into a separate return line thereby providing dual gradient drilling while controlling bottomhole pressure and ECD. A controller controls the energy and thus the speed of the pump in response to downhole measurement(s) to maintain the ECD at a predetermined value or within a predetermined range.
摘要:
An active differential pressure device (APD device) in fluid communication with a returning fluid creates a differential pressure across the device, which controls pressure below the APD Device. In embodiments, a control unit controls the APD Device to provide a selected pressure differential at a wellbore bottom, adjacent a casing shoe, in an intermediate wellbore location, or in a casing. In one arrangement, the control system is pre-set at the surface such that the APD Device provides a substantially constant pressure differential. In other arrangements, the control system adjusts an operating parameter of the APD Device to provide a desired pressure differential in response to one or more measured parameters. Devices such as an adjustable bypass can be used to control the APD Device. In other embodiments, one or more flow control devices coupled to the return fluid reduce the effective pressure differential provided by the APD Device.
摘要:
This invention provides apparatus and methods for controlling the particle size of the solid mass present in the circulating drilling fluid returning from an underwater wellhead during the drilling of a subsea wellbore. The system may include a separator at the sea floor adjacent the wellhead, which separates solids above a predetermined size from the wellstream. The wellstream then enters one or more underwater pumps, which pump the wellstream to the surface. A crusher, as a separate unit, integrated in the separator or in the pump, receives the separated solids and reduces them to relatively small-sized particles. The small particles are then pumped or moved to the surface by the pumps utilized for pumping the wellstream to the surface or by a separate underwater pump. Alternatively, the separated solids are collected from the separator into a container, which container is then transported to the surface by a suitable method. Solids reaching the surface are removed to obtain filtered fluid, which after conditioning by conventional methods is pumped back into the wellbore as the drilling fluid.
摘要:
A tubing handling for subsea oilfield tubing operations, includes an isolation tube to mechanically and/or chemically protect the drill string and improved passage of the drill string and fluid return line to the drilling vessel that further protects them during drilling use. In addition, the improvements include an automatic safety apparatus to hold against unintended movement of the tubular members under extreme length and weight conditions as well as against human error at the rig. Further, the invention includes multi-segment coiled tubing drill strings that can be adapted to drilling requirements in a deep wellbore.
摘要:
This invention provides a tubing injection system that contains one injector for moving a tubing from a source thereof to a second injector. The second injector moves the tubing into the wellbore. In an alternative embodiment for subsea operations, the system may contain a first injector placed under water over the wellhead equipment for moving the tubing to and from the wellbore. A second injector at the surface moves the tubing to the first injector and a third injector moves the tubing from the tubing source to the second injector. In each of the tubing injection systems sensors are provided to determine the radial force on the tubing exerted by the injectors, tubing speed, injector speed, and the back tension on the source. A control unit containing a computer continually maintains the tubing speed, tension and radial pressure on the tubing within predetermined limits. The control unit is programmed to automatically control the operation of the tubing injection systems according to programs or models provided to the control unit.
摘要:
The present invention provides a drilling rig which includes an electrically-controllable tubing injection system. The injection system contains a fixed injector head with two movable injection blocks which are remotely operable to provide a desired opening therebetween. Each injection block contains a plurality of gripping members for holding a range of tubing sizes. The injection blocks automatically adjust to provide the required gripping force and tubing speed according to programmed instructions. A resilient tubing guidance system is positioned above the injector head directs the tubing into the injector head. The rig system contains sensors for determining the radial force on the tubing exerted by the injector head, tubing speed, injector head speed, weight-on-bit during the drilling operations, bulk weight of the drill string, compression of the tubing guidance memeber during operations and the back tension on the tubing reel. During operations, a control unit continually maintains the tubing speed, tension on chains in the injector head, radial pressure on the tubing within predetermined limits. Additionally, the control unit maintains the back tension on the reel and the position of the tubing guidance system within their respective predetermined limits. The control unit also controls the operation of the wellhead equipment. During removal of the tubing from the wellbore, the control unit operates the reel and the injector head to remove the tubing from the wellbore.
摘要:
An apparatus for injection of coiled tubing or jointed tubulars into a well bore, using an injector head capable of handling either type of tubular. The injector head and a working platform are mounted on a structure over the well head, with the injector being positioned so as to allow personnel access to the tubing on the working platform without having to relocate the injector head away from the well head location. The injector can be mounted below the working platform, or it can be mounted spaced above the working platform on a vertically movable trolley on a mast. When the injector is mounted below the working platform, the tubulars and any bottom hole assembly are accessible to personnel on top of the working platform, whether coiled tubing or jointed tubulars are being used. When the vertically movable trolley is used for coiled tubing operations, the injector head can be lowered to the working platform for injection or pulling operations, and it can be raised above the working platform to give access to the tubing and the bottom hole assembly. When the vertically movable trolley is used for jointed tubular operations, the injector head can be raised above the working platform for all phases, and a movable mandrel can be used in the injector head for raising or lowering the jointed tubulars.
摘要:
A system for reverse circulation in a wellbore includes equipment for supplying drilling fluid into the wellbore bit via at least an annulus of the wellbore and returning the drilling fluid to a surface location via at least a bore of a wellbore tubular. The system also includes devices for controlling the annulus pressure associated with this reverse circulation. An active pressure differential device may increase the pressure wellbore annulus to at least partially offset a circulating pressure loss. Alternatively, the system may include devices for decreasing the pressure in the annulus of the wellbore.
摘要:
A subsea return fluid recovery system for recovering drilling fluid and cuttings (“return fluid”) from a subsea wellbore in one embodiment includes a hub at the opening of the subsea wellbore that directs fluid into a transport device. In one embodiment, the hub includes a stand pipe that forms a return fluid column, the hydrostatic pressure of which causes return fluid to flow into the transport device rather than up the stand pipe. One or more buoyant members attached to the transport device convey the transport device toward the surface. A preferred recovery method includes collecting return fluid at the seabed, passively transporting the collected fluid to the surface, and processing the collected fluid at a local (offshore) or land based treatment facility. The retrieval and processing of the return fluid is done outside the critical path of the drilling activities at an offshore platform.