Abstract:
Apparatuses and methods are disclosed for applying electromagnetic energy in a radio frequency (RF) range to an object in an energy application zone via at least one radiating element. At least one processor may be configured to determine locations of a first region and a second region in the energy application zone. In addition, the processor may be configured to regulate a source in order to apply a first predetermined amount of RF energy to the first region in the energy application zone and a second predetermined amount of RF energy to the second region in the energy application zone. The first predetermined amount of energy may be different from the second predetermined amount of energy.
Abstract:
An apparatus for igniting a fuel mixture by applying EM energy is disclosed. The apparatus may include a radiating element configured to apply EM energy to the fuel mixture at a plurality of Modulation Space Elements (MSEs), and a processor configured to determine at least one target spatial distribution of EM energy to be achieved during application of EM energy to the fuel mixture for igniting the fuel mixture, select a subset of MSEs from among the plurality of MSEs the subset of MSEs being selected to provide the at least one target spatial distribution, and cause application of EM energy to the fuel mixture at the selected subset of MSEs, via the at least one radiating element, to provide the at least one target spatial distribution of EM energy application.
Abstract:
Apparatuses and methods for applying EM energy to a load. The apparatuses and methods may include at least one processor configured to receive information indicative of energy dissipated by the load for each of a plurality of modulation space elements. The processor may also be configured to associate each of the plurality of modulation space elements with a corresponding time duration of power application, based on the received information. The processor may be further configured to regulate energy applied to the load such that for each of the plurality of modulation space elements, power is applied to the load at the corresponding time duration of power application.
Abstract:
Apparatuses and methods may include a source of electromagnetic energy configured to deliver electromagnetic energy to an energy application zone and to apply electromagnetic energy to an object. The energy application zone may be divided into subzones by at least one partition comprising an electromagnetic field disruptive material. The source may be configured to deliver electromagnetic energy to multiple subzones by supplying electric fields transverse to the at least one partition.
Abstract:
Apparatuses and methods for applying EM energy to a load. The apparatuses and methods may include at least one processor configured to receive information indicative of energy dissipated by the load for each of a plurality of modulation space elements. The processor may also be configured to associate each of the plurality of modulation space elements with a corresponding time duration of power application, based on the received information. The processor may be further configured to regulate energy applied to the load such that for each of the plurality of modulation space elements, power is applied to the load at the corresponding time duration of power application.
Abstract:
The current invention provides a method for improving the sensitivity of bolometric detection by providing improved electromagnetic power/energy absorption. In addition to its role in significantly improving the performance of conventional conducting-film bolometric detection elements, the method suggests application of plasmon resonance absorption for efficient thermal detection and imaging of far-field radiation using the Surface Plasmon Resonance (SPR) and the herein introduced Cavity Plasmone Resonance (CPR) phenomena. The latter offers detection characteristics, including good frequency sensitivity, intrinsic spatial (angular) selectivity without focusing lenses, wide tunability over both infrared and visible light domains, high responsivity and miniaturization capabilities. As compared to SPR, the CPR-type devices offer an increased flexibility over wide ranges of wavelengths, bandwidths, and device dimensions. Both CPR and SPR occur in metallic films, which are characterized by high thermal diffusivity essential for fast bolometric response.
Abstract:
The current invention provides a devices methods and systems for efficient biosensing using the Surface Plasmon Resonance (SPR) and Cavity Plasmon Resonance (CPR) phenomena. The miniature biosensor comprises a stratified structure having a channel for analyte form between a substrate and thin metallic absorber layer in which plasmon are resonantly excited. Presence of analyte in the channel, changes the resonance conditions, thus changing the energy absorbed by the biosensor. Bolometric signal from the absorber; layer or detection of the radiation not absorbed by the biosensor is used to detect, measure the concentration of, or monitor the analyte.