Abstract:
In an embodiment, a user of a wireless communications device (WCD) is notified when operating in a serving area of a FEMTO access point (AP). In another embodiment, the WCD can notify an application server (AS) that the WCD is served by the FEMTO AP. In another embodiment, the AS can set a service level for a server-arbitrated communication session (CS) based on the FEMTO AP serving status of participating WCDs. In another embodiment, the FEMTO AP can determine to use a downlink control or signaling channel to transmit data to the WCD. In another embodiment, based on its serving FEMTO AP status, the WCD can (i) modify its participation level in the CS and/or (ii) selectively track usage. In another embodiment, the WCD or FEMTO AP can measure performance parameters of the CS to determine whether to trigger a handoff of the WCD to a different AP.
Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
The described aspects relate to methods and systems for enabling connectivity agreements between access terminals and access networks. The connectivity agreements may be established through user-side negotiations or third party negotiations for a connection with an access network. In addition, the described aspects relate to methods and systems for paying access networks for a connection.
Abstract:
Methods and apparatus for efficient two-stage paging wireless communications systems are described. Wireless terminals are assigned to paging groups. A few first paging message information bits are modulated (using non-coherent modulation) into a first paging signal and communicated from a base station to wireless terminals. WTs wake-up, receive the first paging signal and quickly ascertain whether its paging group should expect a second paging signal, if so, the WT is operated to receive the second paging signal; otherwise, the WT goes back to sleep conserving power. The base station modulates (using coherent modulation) a number of second message information bits into a second paging signal and transmits the signal to WTs. From the information in first and second paging signals, a WT can determine that it is the paged WT and process the paging instructions. The intended paged WT can transmit an acknowledgement signal on a dedicated uplink resource.
Abstract:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
Abstract:
Method and apparatus for an access terminal which makes handoff decisions between a number of potential alternative attachment points based on service level indicating metrics are described. The access terminal computes a service level indicating metric differently for a current connection than for a potential alternative connection. A service level indicating metric is a function of loading information and received signal strength. A selection may be made by selecting between attachment points by selecting the attachment point having the highest service level indicating metric from among a plurality of attachment points, one per possible carrier where the attachment point which is considered for a given carrier is the one having the best connection for the given carrier. The access terminal handoff decision approach provides handoff decisions which are nearly as optimal as those which can be achieved using a centralized control node but without the requirement for centralized handoff decisions.
Abstract:
Systems and methodologies are described that facilitate utilizing power-based rate signaling for uplink scheduling in a wireless communications system. A maximum nominal power (e.g., relative maximum transmit power that may be employed on an uplink) may be known to both a base station and a mobile device. For example, the base station and the mobile device may agree upon a maximum nominal power. According to another example, signaling related to a maximum nominal power for utilization on the uplink may be provided over a downlink. Further, selection of a code rate, modulation scheme, and the like for the uplink may be effectuated by a mobile device as a function of the maximum nominal power. Moreover, such selection may be based at least in part upon an interference cost, which may be evaluated by the mobile device.
Abstract:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
Abstract:
Methods and apparatus for efficient two-stage paging wireless communications systems are described. Wireless terminals are assigned to paging groups. A few first paging message information bits are modulated (using non-coherent modulation) into a first paging signal and communicated from a base station to wireless terminals. WTs wake-up, receive the first paging signal and quickly ascertain whether its paging group should expect a second paging signal, if so, the WT is operated to receive the second paging signal; otherwise, the WT goes back to sleep conserving power. The base station modulates (using coherent modulation) a number of second message information bits into a second paging signal and transmits the signal to WTs. From the information in first and second paging signals, a WT can determine that it is the paged WT and process the paging instructions. The intended paged WT can transmit an acknowledgement signal on a dedicated uplink resource.
Abstract:
The apparatus and methods described herein are used to provide data between an application and a modem. One method includes providing data in application data units from the application to the modem, transmitting the data from the modem to a receiver, and reporting by the modem to the application, whether each application data unit has been successfully transmitted from the modem to the receiver.