Abstract:
A method for manufacturing a composite separator plate for a fuel cell stack. The method includes preparing expanded graphite into particles, and dispersing the expanded graphite particles into a polymeric resin. The resin, including the graphite particles, is compression molded to form the separator plate. In one embodiment, the expanded graphite is dispersed into the polymeric resin by mixing it in to the resin. In an alternate embodiment, the expanded graphite is sprinkled into the polymeric resin using an SMC-like process.
Abstract:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. The plate comprises a plate body having a surface defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, at least a portion of the surface having a roughness average of 0.5 to 5 μm and a contact resistance of less than 40 mohm cm2 when sandwiched between carbon papers at 200 psi.
Abstract:
A bipolar plate having hydrophilic surfaces is disclosed. The bipolar plate includes multiple surfaces including channels having channel surfaces. A hydrophilic coating is provided on the surfaces to enhance the water management capabilties of a fuel cell.
Abstract:
A method of fabricating a corrosion-resistant and inexpensive bipolar plate for a fuel cell is disclosed. The method includes providing a bipolar plate substrate and coating a corrosion-resistant coating on the bipolar plate substrate using a kinetic spray process.
Abstract:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises an electrically conductive fluid distribution plate comprising a metallic plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, a metal-containing adhesion promoting layer having a thickness less than 100 nm disposed on the plate body, and a composite polymeric conductive layer disposed on the metal-containing adhesion promoting layer.
Abstract:
A flow field plate for a fuel cell that includes a metal oxide coating that makes the plate hydrophilic. In one embodiment, the metal oxide coating is a thin film to maintain the conductive properties of the flow field plate. The metal oxide can be combined with a conductive oxide. According to another embodiment, the metal oxide coating is deposited as islands on the flow field plate so that the flow field plate is exposed between the islands. According to another embodiment, lands between the flow channels are polished to remove the metal oxide layer and expose the flow field plate. According to another embodiment, the flow field plate is blasted with alumina so that embedded alumina particles and the roughened surface of the plate provide the hydrophilicity.
Abstract:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises a plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, and a polymeric porous conductive layer proximate the plate body, with the porous conductive layer having a porosity sufficient to result in a water contact angle of the surface of less than 40°.
Abstract:
In at least one embodiment, the present invention provides a hydrophilic electrically conductive fluid distribution plate and a method of making, and system for using, the hydrophilic electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises a plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, and a composite conductive coating having a water contact angle of less than 40° adhered to the plate body. In at least one embodiment, the composite coating comprises a polymeric conductive layer adhered to the plate body having an exterior surface, and a particulate carbon layer adhered to the exterior surface of the polymeric conductive layer.
Abstract:
An enhanced stability and inexpensive bipolar plate for a fuel cell is disclosed. The enhanced stability bipolar plate includes a bipolar plate substrate and a corrosion-resistant coating thermally sprayed on the bipolar plate substrate. A method for enhancing corrosion resistance of a bipolar plate is also disclosed.