摘要:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises a plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, and a polymeric porous conductive layer proximate the plate body, with the porous conductive layer having a porosity sufficient to result in a water contact angle of the surface of less than 40°.
摘要:
In at least one embodiment, the present invention provides a hydrophilic electrically conductive fluid distribution plate and a method of making, and system for using, the hydrophilic electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises a plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, and a composite conductive coating having a water contact angle of less than 40° adhered to the plate body. In at least one embodiment, the composite coating comprises a polymeric conductive layer adhered to the plate body having an exterior surface, and a particulate carbon layer adhered to the exterior surface of the polymeric conductive layer.
摘要:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. The plate comprises a plate body having a surface defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, at least a portion of the surface having a roughness average of 0.5 to 5 μm and a contact resistance of less than 40 mohm cm2 when sandwiched between carbon papers at 200 psi.
摘要:
An enhanced stability and inexpensive bipolar plate for a fuel cell is disclosed. The enhanced stability bipolar plate includes a bipolar plate substrate and a corrosion-resistant coating thermally sprayed on the bipolar plate substrate. A method for enhancing corrosion resistance of a bipolar plate is also disclosed.
摘要:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution separator plate assembly, a method of making, and a system for using, the electrically conductive fluid distribution separator plate assembly. In at least one embodiment, the electrically conductive fluid distribution separator plate assembly comprises a metallic cathode plate having opposed surfaces and a first contact resistance, a polymeric composite anode plate adjacent to the metallic cathode plate, and a low contact resistance coating located on at least one of the surfaces of the plates, with the coating having a second contact resistance, less-than the first contact resistance.
摘要:
Methods and systems for enhancing water management capabilities of a fuel cell system are described. The surface of a composite bipolar plate is chemically treated, for example with an oxidizer, to create a hydrophilic surface. The chemical treatment can include immersing the composite plate in an acid bath to acid etch the surface of the composite plate. Additionally, anodic roughening can also be utilized prior to placing the composite plate in the acid bath.
摘要:
The present invention relates to an electrically conductive element (e.g. bipolar plate) for a fuel cell which has an improved adhesive bond. The conductive element generally comprises a first and a second conductive sheet, each having a surface that confront one another. The surfaces that confront one another are overlaid with an electrically conductive primer coating providing corrosion protection and low contact resistance to said first and said second sheets respectively in regions where the first and second sheets contact one another. The first and said second coated surfaces are joined to one another by an electrically conductive adhesive which provides adhesion of said first and said second coated surfaces of said sheets at the contact region. Further, the present invention contemplates methods to form such an improved bond in an electrically conductive element.
摘要:
Devices comprising an electrochemical conversion assembly comprise a plurality of electrochemical conversion cells, and a plurality of electrically conductive bipolar plates, wherein the electrochemical conversion cells are disposed between the adjacent bipolar plates. The electrochemical conversion assembly further comprises a plurality of conversion assembly gaskets, wherein the respective conversion assembly gaskets are molded onto corresponding ones of the plurality of bipolar plates. The conversion assembly gaskets comprise a mixture including polyvinylidene fluoride (PVDF).
摘要:
Methods and systems for enhancing water management capabilities of a fuel cell system are described. The method includes blasting of the surface of a bipolar plate to roughen the surface to create a super hydrophilic or super hydrophobic surface for enhanced water management. Preferably water jet blasting is used. Other blasting methods include grit blasting, sand blasting and dry ice blasting.
摘要:
The present invention is directed to a fuel cell dielectric coolant and evaporative cooling process using same. The coolant comprises an emulsion that defines a polar internal phase and a hydrocarbon external phase. The polar internal phase comprises an azeotropic mixture that includes one or more polar compounds selected from water, alcohol, or combinations thereof. The fuel cell is configured to react fuel with oxygen to generate an electric current and at least one reaction product, and comprises an electrochemical catalytic reaction cell configured to include a fuel flowpath, an oxygen flowpath, and a coolant flowpath fluidly decoupled from the fuel and oxygen flowpaths, and which defines a coolant isolation manifold including the fluid dielectric coolant described above. The method of cooling a fuel cell comprises, inter alia, evaporating the polar internal phase of the fluid dielectric coolant emulsion in the coolant isolation manifold.