Abstract:
A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process including a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device includes a module, such as a vessel containing ceramic-materials arranged in an adsorbent bed or coated on a substrate. The present invention uses a ceramic oxide material through which only oxygen can diffuse. The composition of the ceramic oxide adsorbent material is such that a significant number of oxygen vacancies exist in the material. By placing either a voltage potential or a pressure gradient across the membrane, oxygen is selectively diffused in and through the oxide material to separate the air supply into an oxygen component for introduction into the integrated scrubber.
Abstract:
An abatement system is provided which includes 1) an abatement unit adapted to abate effluent; and 2) an ambient air supply system. The ambient air supply system includes an air moving device, wherein the ambient air supply system is adapted to supply ambient air to the abatement unit for use as an oxidant. Numerous other aspects are provided.
Abstract:
In some aspects, a method is provided for abating perfluorocarbons (PFCs) in a gaseous waste abatement system having a pre-installed controlled decomposition oxidation (CDO) thermal reaction chamber. The method that includes (1) providing a catalyst bed within the CDO thermal reaction chamber; and (2) introducing a gaseous waste stream into the CDO thermal reaction chamber so as to expose the gaseous waste stream to the catalyst bed. Numerous other aspects are provided.
Abstract:
The present invention relates to systems and methods for controlled combustion and decomposition of gaseous pollutants while reducing deposition of unwanted reaction products from within the treatment systems. The systems include a novel thermal reaction chamber design having stacked reticulated ceramic rings through which fluid, e.g., gases, may be directed to form a boundary layer along the interior wall of the thermal reaction chamber, thereby reducing particulate matter buildup thereon. The systems further include the introduction of fluids from the center pilot jet to alter the aerodynamics of the interior of the thermal reaction chamber.
Abstract:
The present invention relates to systems and methods for controlled combustion of gaseous pollutants while reducing and removing deposition of unwanted reaction products from within the treatment systems. The systems employ a two-stage thermal reactor having an upper thermal reactor including at least one inlet for mixing a gaseous waste stream with oxidants and combustible fuels for thermal combustion within the upper thermal reactor. The upper thermal reactor further includes a double wall structure having an outer exterior wall and an interior porous wall that defines an interior space for holding a fluid and ejecting same, in a pulsating mode, through the interior porous wall into the upper thermal reactor to reduce deposition of the reaction products on the interior of the upper reactor chamber. The two-stage thermal reactor further includes a lower reactor chamber for flowing reaction products formed in the upper thermal reactor through a water vortex that provides a water overflow along the interior of the lower reactor chamber thereby reducing deposition of unwanted products on the interior surface of the lower reactor.
Abstract:
In at least one aspect, a controlled decomposition oxidation (CDO) system is provided for abating perfluorocarbons (PFCs) that includes (1) an upstream portion including a first conduit adapted to convey a gaseous waste stream; (2) a thermal reaction chamber having an inlet coupled to the first conduit, a catalyst bed adapted to abate PFCs, and an outlet; and (3) a downstream portion including a second conduit having a first end coupled to the outlet of the thermal reaction chamber and having a portion, downstream from the first end, positioned proximate to the first conduit. The second conduit is adapted to convey a gaseous waste stream heated within the thermal reaction chamber to enable a transfer of heat energy from the second conduit to the first conduit so as to pre-heat the gaseous waste stream in the first conduit. Numerous other aspects are provided.
Abstract:
In some aspects, an apparatus is provided for abating perfluorocarbons (PFCs) in a controlled decomposition oxidation (CDO) thermal reaction chamber. The apparatus includes (1) a cartridge insertable into the thermal reaction chamber having gas-permeable first and second ends and including a catalyst material; and (2) thermally-conductive fixtures positioned within the cartridge. Numerous other aspects are provided.
Abstract:
In a first aspect, a first abatement apparatus is provided. The first abatement apparatus includes (1) an oxidation unit adapted to receive an effluent stream from a semiconductor device manufacturing chamber; (2) a first water scrubber unit adapted to receive the effluent stream from the oxidation unit; and (3) a catalysis unit adapted to receive the effluent stream from the first water scrubber unit. Numerous other aspects are provided.