Abstract:
A rope structure of the present invention comprises a plurality of first yarns and a plurality of second yarns. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO, have a breaking elongation of approximately 2%-5%, and have a tenacity of approximately 25-45 gpd. The second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two, have a breaking elongation of approximately 2%-12%, and have a tenacity of approximately 6-22 gpd. The first and second yarns are combined to form rope sub-components. The rope sub-components comprise approximately 20-80% by weight of the first yarns.
Abstract:
A computer-implemented method using a mobile device to inspect a rope. Visual data is captured, wherein the visual data includes one or more sections of the rope along a length thereof. The images are analyzed using a knowledge base implemented within logic of a control system of the mobile device. From the knowledge base, an expected life for the rope is calculated, and a report is generated on the mobile device to display the expected life of the rope as calculated from the knowledge base. The method further includes the step of processing the visual data to ready the visual data for analysis. This involves breaking down the visual data into tiles, wherein the visual data is broken into multiple image segments along the length of the rope.
Abstract:
A rope system for system level recoil control and method for providing a rope system for system level recoil control are provided. The rope system includes a first rope component and a second component, and the second rope component is connected in series to the first rope component. The first rope component includes a first rope subcomponent and a second rope subcomponent, the first rope subcomponent has predetermined failure strength and is designed and configured to be a controlled failure point for the system, and the second rope subcomponent has a predetermined elongation capability. Upon failure of the first rope subcomponent, the second rope subcomponent is configured to elongate to absorb a predetermined amount of a predetermined operational strain energy of the rope system and to stretch over a predetermined distance and/or predetermined period of time before the second rope subcomponent fails.
Abstract:
A round sling system comprises a bearing structure, a cover, and at least one organizer secured to the cover. The bearing structure is arranged to define a plurality of loop portions and to define at least one bearing structure end portion. The cover defines a cover chamber. The at least one organizer is configured to engage the bearing structure such that the at least one organizer maintains a position of the bearing structure relative to the cover and the at least one organizer maintains a spatial relationship of the loop portions at least within the at least one bearing structure end portion.
Abstract:
A rope structure adapted to engage an intermediate structure while loads are applied to ends of the rope structure comprises a primary strength component and a coating. The primary strength component comprises a plurality of fibers adapted to bear the loads applied to the ends of the rope structure. The coating comprises a mixture of a lubricant portion and a binder portion. The lubricant portion comprises particles having an average size of within approximately 0.01 microns to 2.00 microns. The binder portion is applied to the primary strength portion as a liquid and dries to support the lubricant portion relative to at least some of the fibers. The matrix supports the lubricant portion such that the lubricant portion reduces friction between at least some of the plurality of fibers and between at least some of the plurality of fibers and the intermediate structure.
Abstract:
A rope structure has a plurality of link structures each defining first and second ends and at least one organizer member. Each first end comprises at least first and second bend portions, and each second end comprises at least third and fourth bend portions. The first end of a first one of the plurality of link structures and the second end of a second one of the plurality of link structures engages the at least one organizer member such that the first and second bend portions of the first end of the first one of the plurality of link structures are substantially parallel to each other and substantially perpendicular to the third and fourth bend portions of the second end of the second one of the plurality of link structures.
Abstract:
A rope structure comprises a plurality of link structures each defining first and second ends. Each link structure is formed of synthetic fibers. Each first end comprises at least first and second bend portions. Each second end comprises at least third and fourth bend portions. The first end of a first one of the plurality of link structures engages the second end of a second one of the plurality of link structures such that the first and second bend portions of the first end of the first one of the plurality of link structures are substantially parallel to each other and substantially perpendicular to the third and fourth bend portions of the second end of the second one of the plurality of link structures.
Abstract:
A rope structure adapted to engage an intermediate structure while loads are applied to ends of the rope structure comprises a primary strength component and a coating. The primary strength component comprises a plurality of fibers adapted to bear the loads applied to the ends of the rope structure. The coating comprises a mixture of a lubricant portion and a binder portion. The lubricant portion comprises particles having an average size of within approximately 0.01 microns to 2.00 microns. The binder portion is applied to the primary strength portion as a liquid and dries to support the lubricant portion relative to at least some of the fibers. The matrix supports the lubricant portion such that the lubricant portion reduces friction between at least some of the plurality of fibers and between at least some of the plurality of fibers and the intermediate structure.
Abstract:
A hook assembly comprises a hook member and a pin assembly. The hook member defines a base portion, a hook, and first and second pin arms. The hook extends from the base portion and defines a first, second, third, and fourth hook portions and a hook opening. First and second lock projections extend from the second hook portion and fourth hook portions to define a lock gap. The hook opening has a first hook opening dimension extending between the second hook portion and the fourth hook portion and a second opening dimension extending between the third hook portion and the lock gap. The first and second pin arms extend from the base portion. The pin assembly engages the first and second pin arms. The first rope segment engages the pin assembly and the second rope segment engages the third hook portion to place the hook assembly under tension.
Abstract:
A rope structure adapted to engage a bearing structure while under load comprises a plurality of fibers, a matrix, and lubricant particles. The plurality of fibers is adapted to bear the loads applied to the ends of the rope structure. The matrix surrounds at least a portion of some of the plurality of fibers. The lubricant particles are supported by the matrix such that at least some of the lubricant particles are arranged between at least some of the fibers to reduce friction between at least some of the plurality of fibers and at least some of the lubricant particles are arranged to be between the bearing structure and at least some of the plurality of fibers to reduce friction between the bearing structure and at least some of the plurality of fibers.