Abstract:
An elongate body adapted to bend in a single plane, comprises a rope extending within a succession of individual tubular elements closely spaced along the rope. Each element has on two opposite sides of the plane an extended section engaging a recess in its neighbouring element, the profiles of the section and recess allowing relative rotation of adjacent elements in said plane. The tubular elements thus form an exoskeleton around the rope which must be breached before the rope can be cut. The geometry of the tubular elements can be such that notwithstanding gaps, the rope cannot be readily accessed unless the exoskeleton is broken.
Abstract:
The invention relates to a rope made of a textile fibre material for applications in which a diagonal pull may occur, characterized in that the rope is a core/sheath rope the core (1) of which and the sheath of which are composed essentially of a textile fibre material the core (1) of which is stranded and which exhibits a force-fitting winding with a tensile element (2, 2′, 2″) between the core (1) and the sheath.
Abstract:
Cable structures of security systems may include multiple subassemblies having different cut-resistant characteristics. One system includes, inter alia, a portable article, a support, and a length of a cable assembly extending between a first cable end coupled to the portable article and a second cable end coupled to the support, where the cable assembly includes a first cable subassembly extending along at least a portion of the length of the cable assembly, and a second cable subassembly extending along at least the portion of the length of the cable assembly and adjacent to the first cable subassembly, and where the first cable subassembly includes a first cut resistant characteristic and the second cable subassembly includes a second cut resistant characteristic that is different than the first cut resistant characteristic.
Abstract:
Cable structures with multiple subassemblies having different cut-resistant characteristics and systems and methods for making the same are provided.
Abstract:
A high traction synthetic rope comprising a braided sheath (8) adhered to a synthetic strength member (7) by means of a first synthetic portion (9) and portions of material (23) adhered to the outside surface of the braided sheath by means of a second synthetic portion (21), where the portions of material (23) are formed of a substance that differs from a substance mainly forming the second synthetic portion (21) and exhibits greater friction when wet or with greasy conditions and measured on an iron surface than does the substance mainly forming the second synthetic portion. Also methods of manufacturing such a high traction synthetic rope are disclosed. The rope shows reliable traction on driven rotating elements during wet/greasy conditions.
Abstract:
The invention relates to a composite twisted cable formed by impregnating carbon fibers with thermoplastic resin, and provides a fiber composite twisted cable which allows downsizing of a reel by being easy to be bent, can be transported to mountain areas which is normally hard to achieve a transport with a large vehicle, is hard to be curled, and is superior in workability. It is a cable having 1×n structure which is formed by impregnating bundles of carbon fibers with thermosetting resin, then twisting a plurality of strands each formed by covering an outer periphery of the bundle with a fiber, and then curing the thermosetting resin by applying the heat treatment, and a core strand and side strands which constitute the cable are separated and independent without being bonded so as to allow independent behavior of the respective strands when the cable is bent.
Abstract:
The invention relates to a composite twisted cable formed by impregnating carbon fibers with thermoplastic resin, and provides a fiber composite twisted cable which allows downsizing of a reel by being easy to be bent, can be transported to mountain areas which is normally hard to achieve a transport with a large vehicle, is hard to be curled, and is superior in workability. It is a cable having 1×n structure which is formed by impregnating bundles of carbon fibers with thermosetting resin, then twisting a plurality of strands each formed by covering an outer periphery of the bundle with a fiber, and then curing the thermosetting resin by applying the heat treatment, and a core strand and side strands which constitute the cable are separated and independent without being bonded so as to allow independent behavior of the respective strands when the cable is bent.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.In order, in the same sense, conversely to make the strain behavior of the layer of strands approximate that of the core cable, the cable has an intermediate layer of an elastic synthetic material into which the steel wire strands are pressed while spaced apart from one another in such a way that the outer layer extends under load, and contracts radially.A strand can be analogously constructed.
Abstract:
One aspect of this invention concerns a multi-strand steel wire rope (28, 32, 36, 46, 50) comprising multiple strands (3, 10, 38) laid up helically on a core (30, 34,), characterised in that at least some of the strands are deep strands (10, 38), i.e. strands with a heightwidth ratio greater than unity. Another aspect of the invention concerns the deep strand (10, 38) itself.
Abstract:
A rubber product-reinforcing metallic cord is provided which comprises three to five metallic filaments, which shows a high degree of penetration of rubber without reducing compressive rigidity, and which can be manufactured at low facility and production costs. A rubber product-reinforcing metallic cord 7 is formed by twisting together a pre-strand 6 comprising a first metallic filament 1 and a second metallic filament 2 helically wrapped around the first filament 1, and a fifth metallic filament 3 (or 5) with a twist pitch P. The metallic cord 7 may be formed by twisting together two of such pre-strands, or by twisting together two of such pre-strands and the fifth metallic filament.